

What Have We Really Learned About the Quasar Broad Line Region?

Mike Brotherton (University of Wyoming)

Quasars and their Optical/UV Spectra

Fundamental Quasar Parameters

Black Hole Mass

Geometry: Axisymmetry and viewing angle

Accretion Rate (Eddington fraction, L/Ledd)

○ Luminosity

• Others, e.g., abundances

Parameters <-> Observables (Spectra) <-> Picture?

The BLR "Standard Model" circa 1990

 Very large number of optically thick BLR "clouds" with density ~10¹⁰ cm⁻³, with low filling factor and ~10% covering fraction

 photoionization distances of light days to light months

photoionized by a thin
 accretion disk, corona, log U = -2

Some hints only about geometry and dynamics

Urry & Padovani (1995)

The BLR "Standard Model" had problems!

 Cloud equilibrium a problem, and emission lines very smooth at high resolution, implying <u>flows</u> (e.g. Arav et al. 1998)

<u>Empirical BLR distances</u>, different but
 still ~light days to months, via RM

<u>"LOC" models (Baldwin et al. 1995) to</u>
 explain ionization parameter fine-tuning

High velocity component is <u>stratified</u>
 with flattened geometry

Stratified, Likely Virial BLR Gas

Virialized fit:

 \bigcirc

 $V \propto \tau^{-1/2}$

Peterson (2011) after Peterson & Wandel (1999,2000)

Orientation: Wills & Browne (1986)

 Hβ line widths in radioloud quasars depend on orientation in a way that suggests a flattened or disk-like BLR and a higher edge-on velocity.

 Black hole masses need individual correction for orientation (the "f" factor).

Also the High-Velocity Gas for C IV

- C IV shows the same behavior, with edge-on radio-loud quasars having the broadest profiles, but cannot see using the FWHM
- <u>Runnoe et al. (2014)</u>
 shows very significant
 correlation but only
 when looking at the line
 wings (e.g., FWZM)

Orientation correction to M_{BH}

EV1/Eddington fraction/non-virial ILR

-14

Inverse correlation between Narrow Line Region (NLR) and optical Fe II

Intermediate Line Region (ILR) varies with NLR, is non-virial, affects C IV (Brotherton et al. 1994; Denney 2012)

SED changes, disk structure changes?

Emission-line spectra vary with (probably) Eddington fraction (Boroson & Green 1992; Boroson 2002; Shen & Ho 2014; Sun & Shen 2105)

PG1543+489

C IV Reverberation: RMS vs. SE Profiles

 RMS C IV profiles broader than single epoch (SE) profiles. Low-velocity line cores (ILR component) don't vary on same timescale, vary object-to-object with EV1.
 Different behavior from Mg II, Hbeta!

SE C IV Mass Corrections (vs. Mg II)

 SE C IV masses too large compared to Mg II masses by almost a factor of two, due to EV1 mismatch between RM samples and luminous high-z SDSS quasars.

SE C IV Mass Corrections (vs. Mg II)

 Can correct for EV1 effects using C IV profile measurements alone. RL and RQ need slightly different corrections (likely blazar continuum). Does not work for WLQs. Brotherton et al. (2016).

EV1 and C IV Blueshifts (vs. [O III])

- High-ionization lines like C IV on average blueshifted relative to narrow lines, Mg II, Hbeta (Gaskell 1982).
- Velocity shifts correlated with EV1 parameters, primarily* due to changing ILR component, revealing intrinsic blueshift of high-velocity gas (Brotherton et al. 1994). Can similarly statistically correct redshift for EV1 in quasars (Mason et al. 2016).
- "Virial" gas in a disk-wind? Or something more subtle? Let's be careful.

Eigenvector 1 Relationships

Shen & Ho (2014)

Line-Continuum Correlations

Shemmer & Lieber 2015

Baldwin effect (left; e.g., Baldwin 1978) and Modified Baldwin effect (e.g., Baskin & Laor 2004). Red points Weak Line Quasars (WLQs).

Identical Spectra, Less Identical Luminosity

Rochais et al. (2016). Quasars with nearly identical spectra ("Doppelgangers") have similar luminosity in general, but can differ by large factors (x5-7). Characterizing the Baldwin effect this way, and thinking about flux-limited samples and luminosity functions varying with z, shows why so difficult to use for cosmology. Variability and time lags contribute to this luminosity variation. A Gaskell type reddening, too?

Modern BLR Pictures, but No Consensus

Outstanding BLR Questions

- Broad line widths: reliably accounting for competing effects of geometry and mass
- EV1 Mechanisms?
 - Density, SED, illumination, NLR gas
- Disks and Disk winds with Eddington fraction?
- Meta-level: M-sigma_{*} & R-L, vary with EV1, Orientation, Host?
- Statistical vs. Individual: real BLRs have huge diversity
- Still no "standard model" under new paradigm is one possible?