

Prevalence of Hel* Absorption Line Multiplets in LoBAL Quasars

Wen-Juan Liu wjliu@ynao.ac.cn

Collaborators: Hongyan Zhou (PRIC), Tuo Ji (PRIC), Weimin Yuan (NAOC), Tinggui Wang (USTC) et al.

Lijiang RM Workshop (Oct. 2016)

A popular working model

(c) Interaction/"Merger"

- now within one halo, galaxies interact & lose angular momentum

- SFR starts to increase - stellar winds dominate feedback
- rarely excite QSOs (only special orbits)

(b) "Small Group" M66.0

 halo accretes similar-mass companion(s) - can occur over a wide mass range - Mais still similar to before: dynamical friction merges the subhalos efficiently

(a) Isolated Disk

- halo & disk grow, most stars formed - secular growth builds bars & pseudobulges - "Seyfert" fueling (AGN with Mo>-23) - cannot redden to the red sequence

(d) Coalescence/(U)LIRG

starburst & buried (X-ray) AGN

- starburst dominates luminosity/feedback.

but, total stellar mass formed is small

- gas inflows to center:

1000 100 =

0.1

log 10

9

-2

(f) Quasar

- BH grows rapidly: briefly dominates luminosity/feedback - remaining dust/gas expelled get reddened (but not Type II) QSO; recent/ongoing SF in host high Eddington ratios merger signatures still visible

 dust removed: now a "traditional" QSO host morphology difficult to observe: tidal features fade rapidly characteristically blue/young spheroid

(g) Decay/K+A

- tidal features visible only with remnant reddens rapidly (E+A/K+A)

•How do major mergers drive gas on large scales into the nuclear region and trigger AGN activities?

• How do AGN outflows affect the host galaxies in detail? •What is the effect of AGN outflows on star formation? Positive or negative? Both?

Broad absorption line (BAL) quasars

15-30% quasars all observed to have BAL features

Common BALs: OVI, NV, CIV, Si IV, AlIII, FeIII, MgII, FeII

Difficulties in studying BALs using common absorption lines: --- Easily **saturated** or **blended**

Object	Properties of Measured Outflows to Date				
	R ^a (kpc)	log <i>N_H</i> (cm ⁻²)	$\log U_H$	$\log \dot{E}_k \\ (\text{erg s}^{-1})$	<i>М</i> (<i>M</i> ⊙ yr ⁻¹)
QSO 0059-2735	0.001-0.05	≥21.5°	-0.7	≥41.1-42.8	≥0.2
3C 191	28	20.3	-2.8	44.0	310
QSO 1044+3656	0.1-2.1	20.0-22.0	-1.0 to -6.0	44.5-45.4	74-530
FIRST 1214+2803	0.001-0.03	21.4-22.2	-2.0 to -0.7	41.6-43.8	0.3-55
FIRST 0840+3633	0.001	~21.3	<-1.8	>41.9	>0.3
FIRST 0840+3633d	0.23				
QSO 2359-1241	3	20.6	-2.4	43.7	93
SDSS J0838+2955	3.3	20.8	-1.9	45.7	590
SDSS J0318-0600	6 or 17	19.9 or 20.0	-3.1 or -2.7	44.8 or 45.4	120 or 450

Table 10

Dunn et al. (2010)

de Kool et al. (2002)

Hel* BALs -- an approach to extensively and quantitatively study AGN outflows

 Hel* λλ10830, 3889, 3189... easy to observe from the ground, well separated, no blending problems.

2. Large oscillator strengths difference:

fλ (Hel* 10830:3889:3189) ---23.5: 1: 0.33

3. Low abundance -- hard to saturate

The Hel*λ3889 BAL sample

• Before this work, only 11 Hel* BAL quasars had been reported, e.g., Mrk 231, FBQS J1115+3822, ...

• Most of the 11 show both MgII and HeI* λ 3889 absorption lines with the same blueshift.

The "pair-matching" method

Examples of fits using the pair-matching method

Applications of Hel* absorption

> We plan to enlarge the Hel* BAL sample to higher (1.35 < z > 2.25) and lower (z < 0.3) redshifts.

> We are now carrying out a mini-census looking for HeI* 10830 in z < 0.3 AGNs to find LoBAL QSOs. Low-z BAL QSOs are hard to detecte from the ground.

> Taking advantages of HeI* and other absorption lines, we can determine the \vec{E}_k and \vec{M} of the ionized AGN outflows for a large sample in 0 < z < 2.25.

For the low-z BAL sample, we can explore the connections between AGN outflows and host galaxies statistically.

For the whole sample of both low-z and high-z, we will try to estimate the feedback powers of AGN outflows at different redshifts.

Thank you!