The 3nd International Summer School on TeV Experimental Physics 2016

超出标准模型之外的新物理) 假想理论实验的启示

北京大学物理学院

2016年7月14日于清华大学

1) 标准模型回顾

2) 为什么寻找标准模型之外的新物理?

3) 中微子质量

4) 暗物质粒子起源

5) 新物理粒子、模型及其对撞机信号

标准模型和新物理

• 标准模型的建立历史(树图幺正性)

我们为什么相信希格斯粒子一定存在? (韩涛老师课件)

- 标准模型的理论问题:
 - ★ 等级性问题(自然性问题)——量子涨落引起的麻烦 是不是问题?如果是,如何解决?

 1)超对称:弱动力学模型
 2)小希格斯模型:强动力学模型
 ★ 统一模型
 是不是问题?如果是,如何解决?
- 新物理的实验证据: 中微子振荡和暗物质存在
 - 它们是否和粒子物理有关?
 - 是否是基本粒子? 如果是, 那么理论如何解释?

物理学是实验科学, 历史上理论和实验 一直处于共生、螺 旋上升状态。

当遇到理论无法解释的实验现象,人们构造新物理模型 解释实验,并<mark>预言</mark>进一步研究的<mark>新实验信号。</mark> 但如果没有实验数据的情况下,理论家如何做? 物理学是实验科学, 历史上理论和实验 一直处于共生、螺 旋上升状态。

当遇到理论无法解释的实验现象,人们构造新物理模型 解释实验,并预言进一步研究的新实验信号。 但如果没有实验数据的情况下,理论家如何做?

物理学是实验科学, 历史上理论和实验 一直处于共生、螺 旋上升状态。

当遇到理论无法解释的实验现象,人们构造新物理模型 解释实验,并<mark>预言</mark>进一步研究的<mark>新实验信号。</mark> 但如果没有实验数据的情况下,理论家如何做?

假象的理论实验

散射振幅的幺正性 (理论家的实验工具)

树图水平上的幺正性讨论

幺正性:几率相加等于1的时髦说法 (量子力学几率诠释的要求)

几率守恒:产出不能大于输入

本节讲座:

从树图幺正性出发理解标准模型的建立 (Just for fun)

树图水平上的幺正性讨论

幺正性: 几率相加等于1的时髦说法 (量子力学几率诠释的要求)

几率守恒:产出不能大于输入

本节讲座:

从树图幺正性出发理解标准模型的建立 (Just for fun)

问题: 这对新物理研究有什么启示?

树图水平上的幺正性讨论

幺正性: 几率相加等于1的时髦说法 (量子力学几率诠释的要求)

几率守恒:产出不能大于输入

本节讲座:

从树图幺正性出发理解标准模型的建立 (Just for fun)

问题:这对新物理研究有什么启示? 目前没有,但建议了可能的实验方案

物质场:自然界大厦的砖瓦

自然界的基本成分是随时间演化的

- 质子,反质子,电子,正电子和光子
- pion介子告诉我们: 核子不是基本的
- muon轻子告诉我们: 自然界很复杂

我们并不了解自然界为什么会有这些基本组分,也不清楚它们的数目, 但每个新粒子的发现都会带来粒子物理的变革

粒子物理的标准模型

已知的基本粒子谱

粒子物理的标准模型如何计算

量子力学

薛定谔方程:

$$i\hbar\frac{\partial\psi}{\partial t} = \hat{H}\psi$$

1.找出描述系统的哈密顿量 H2.将H代入薛定谔方程3.做理论计算

相对论性量子场论 标准模型给出描述相互作用 的拉格朗日量 (L) \mathcal{L} 费曼规则 \boldsymbol{h} 费曼图 S-矩阵元 费曼顶点 coupling 理论预言

(微扰论展开)

矢量玻色子 自旋=1

大部分情形下,粒子间的相互作用 仅仅发生在极高能量和极短距离

长度=动量 量子性质 神奇的 长度=时间 自然界 相对论性质 C 常数 温度=能量 k_B 热力学性质

基本粒子的高能行为

	自旋	入射/出射	虚	端点
	0 (标量子)	1	$\frac{1}{E^2}$	$\frac{1}{E^2}$
	1/2 (费米子)	\sqrt{E}	$\frac{1}{E}$	$\frac{1}{E}$
	1(玻色子)	E	1	$\frac{1}{E^2}$

规范理论保证费曼图无发散的高能行为

规范对称性保证不同图形在高能区的坏行为彼此相消

单个图形在高能区都有坏的行为, 散射几率随能量 增加而破坏几率守恒, 但自然界巧妙地运用规范对 称性将不同图形之间的坏行为相互抵消掉。

有时人们需要引入新的粒子来产生新的图形, 而这一旦被实验证实就会引起整个领域的巨大变革

$A \rightarrow B + e^{-}$

$$(Z, N) \to (Z+1, N-1) + e^{-1}$$

能动量守恒要求:两体衰变的末态粒子能量是固定数值

但实验结果显示电子能量是连续谱

 $M_{fi} = G_F \left[\bar{\psi}_n \gamma^\mu \psi_p \right] \left[\bar{\psi}_e \gamma_\mu \psi_\nu \right]$ $G_F \sim 10^{-5} (\text{GeV})^{-2}$ 整个理论和QED相似 但力程为零

费曼-盖尔曼的V-A理论

 $[G_F] = \text{GeV}^{-2}$

常数

 $G_F \bar{\psi}_n \gamma^\mu (1 - \gamma_5) \psi_p \bar{\psi}_e \gamma_\mu (1 - \gamma_5) \psi_\nu$

人们就知道这些理论只是有效模型,因为违背了幺正性。

费曼-盖尔曼的V-A理论 $G_F \bar{\psi}_n \gamma^\mu (1 - \gamma_5) \psi_p \bar{\psi}_e \gamma_\mu (1 - \gamma_5) \psi_\nu$

 $\sim G_F \left(\sqrt{E}\right)^4 \sim G_F E^2$

当能量趋于无穷时, 散射截面发散

当能量趋于无穷时, $\sigma(e^-\nu \to e^-\nu) \longrightarrow \infty$

 $\mathcal{M} \sim g^2 -$

 $\left(\sqrt{E}\right)$ E^{2}

当能量趋于无穷时,散射振幅不发散

 $\mathcal{M} \sim g^2 \frac{E^2}{m_W^2} \frac{\left(\sqrt{E}\right)^2}{E} \sim g^2 \frac{E^2}{m_W^2}$ 19

军决万条

中间玻色子模型

$$\sqrt{E} \quad \nu \longrightarrow W^{+} \quad E \qquad \sqrt{E} \quad \nu \longrightarrow W^{-} \quad E \qquad \frac{1}{E} \qquad E^{+} \quad \text{Paralepton}$$

$$\sqrt{E} \quad \bar{\nu} \longrightarrow W^{-} \quad E \qquad \sqrt{E} \quad \bar{\nu} \longrightarrow W^{+} \quad E \qquad \sqrt{E} \quad \bar{\nu} \longrightarrow$$

自然界青睐"中性矢量玻色子"

- 2) 中性矢量玻色子和带电规范玻色子相互作用

22

标准模型中轻子弱电相互作用

23

 σ

夸克的弱相互作用 (理论先预言粲夸克)

Cabibbo 混合理论(1963) 相互作用本征态 不是质量本征态 $d_w = \cos\theta_c d_L + \sin\theta_c S_L$ ____ Cabibbo angle M ~ GF EL Ya Ver d' 8 ~ UL = GFELVaVeL dL VaUL coste + GF EL YX VeL SL 8 UL SINDC $Sin \theta_c = 0.221$ 可辦释实验结果 $cos \theta_c = 0.974$ 了辦释实验结果

26

高能安全理论: リ方案:31入中性流」 W° ร (Flavor Changing Neutral Current) 这种味识变中性流过是Cabibbo理论的不是这 $\vec{d}_{L} \vec{x} \vec{d}_{L} = C_{\theta} \vec{d}_{L} \vec{x} \vec{d}_{L} + S_{\theta} \vec{s}_{L} \vec{x} \vec{s}_{L}$ +3 $+ C_{\theta}S_{\theta} \left[\overline{d}_{L} \gamma^{\varkappa} S_{L} + \overline{S}_{L} \gamma^{\varkappa} d_{L} \right] -$ 中的变

27

 $B_r \sim 10^{-2}$

>>>

这两个顶点的大小应该

ìh

高能安理论 揉 Z

1970年GIM等人提生:存在尚来被发现的带子种夸克 - charm quark GIM(m) $\begin{pmatrix} u \\ d' \end{pmatrix} \begin{pmatrix} c \\ s' \end{pmatrix}$ $\overline{S_L}'Y_{x}S_L' = S_{\theta}^2 \overline{d_L}Y^{x}d_L + C_{\theta}^2 \overline{S_L}Y^{x}S_L - S_{\theta}C_{\theta}[\overline{d_L}Y^{x}S_L + \overline{S_L}Y^{x}d_L]$

高裕安全性:

30

希格斯粒子一定存在

或者, 我们必定要观测到TeV能标附近的新物理效应

游察E4的环行为我们还有E2的高能区行为

 $\mathcal{Z}(\mathbb{Z}) \sim M_v^2 E^2$

一要求存在一种教子,此教子和规范玻色子 作用实业地产MV — D Higgs boson
$) \sim M_V^2 E^2$

一日要求存在一种教圣,此教圣和规范玻色圣 作用字边地产MV — D Higgs boson

MV MV

抵消掉日的环行为

*)
$$\frac{1}{2}$$
 $\frac{1}{2}$ \frac

 $M_H \leq 1.2$ TeV 在LHC探测范围之内

如果 $M_H \ll \text{TeV}$ (已被实验证实了) 弱相互作用在所有能量都是弱耦合的, 微扰论一直适用

如果 $M_H \sim \text{TeV}$ W^{\pm}, Z, H 等粒子在TeV能标都强烈耦合 会出现大量的规范玻色子对的共振态

粒子物理的标准模型

集百年物理之大成

新"元素周期表"

20世纪自然科学的卓越成就之一

宇宙万物可以用一个简单公式描述

$$\begin{split} &= \operatorname{sh}^{2} = \operatorname{sh}^{2} - \operatorname{sh}^{2} - \operatorname{sh}^{2} \operatorname{sh}^{2} - \operatorname{sh}^{2} \operatorname{sh}^{2} - \operatorname{sh}^{2} + \operatorname{s$$

Second an apple

ATTIC: 2021400122-112.

 $\begin{aligned} \mathcal{J} &= -\frac{1}{4} F_{AV} F^{AV} \\ &+ i F \mathcal{D} \mathcal{J} + h.c. \\ &+ \mathcal{Y}_{ij} \mathcal{Y}_{j} \mathcal{P} + h.c. \\ &+ |D_{M} \mathcal{P}|^{2} - V(\mathcal{P}) \end{aligned}$

 $\underbrace{\frac{SU(3)_{\text{Color}}}{QCD}}$

(Strong Interaction)

 $\otimes SU(2)_{\text{Left}} \otimes U(1)_{\text{Hyper charge}}$

WEAK \oplus QED

Unification of Weak and Electromagnetic 为什么寻找新物理? (标准模型有什么不妥之处吗?)

2) 暗物质的粒子物理起源

标准模型中没有暗物质候选者

我们仅仅了解宇宙的5%

3) 物理学家的梦想

电

磁

电

标准模型的不足之处 3) 大统一理论:标准模型三种作用力无法统一

$$\alpha^{-1} : \alpha_W^{-1} : \alpha_S^{-1} \approx 128 : 30 : 9$$
$$\left[\alpha_i(q^2)\right]^{-1} = \left[\alpha_i(\mu^2)\right]^{-1} + \beta \ln\left(\frac{q^2}{\mu^2}\right)$$

44

4) 等级性问题(精细调节问题)

如果到大统一能标时标准模型 都成立,那么理论将存在 异常大的精细调节问题!

$$m_h^2 = m_0^2 - \delta m_h^2$$

125 **bare** $\Lambda^2/52$

下节课,我们将重点讨论 各种新物理模型以及它们在 对撞机上的实验信号 The 3nd International Summer School on TeV Experimental Physics 2016

超出标准模型之外的新物理 2)新物理的实验信号

北京大学物理学院

2016年7月15日于清华大学

新费米子 (新夸克、新轻子) 新规范玻色子 (带电的和中性的) 新标量粒子 (带电的和中性的) 高自旋粒子(引力子?) 高激发态 (复合粒子)

理论家的贡献

Techicolor

NMSSM MSSM Supersymmetry Excited quark

> Fourth Generation

Extra dimension

Dark

Matter

Twin Higgs

Composite Higgs

> Little Higgs Model

Two Higgs
Doublet Model

String

Deconstruction Private Higgs

Chiral symmetry Grand Unification

理论家的贡献

Supersymmetry Excited quark

MSSM

NMSSM

Fourth Generation

Extra dimension

Techicolor

Composite Higgs

> Little Higgs Model

> > 49

Dark Matter

Twin Higgs

Grand Unification

理论家的贡献

MSSM NMSSM Supersymmetry

Techicolor Cor

Composite Higgs

Little Higgs Model

Twin Higgs

nd Unification

CMS Exotica Physics Group Summary – LHCP, 2016

50

A Sta	TLAS Exotics Se atus: March 2016	earch	es* - 9	95%	6 CL	Exclusion	感谢实验物	物理学家	的不懈努		AS Preliminary
	Model	<i>ℓ</i> ,γ	Jets†	E ^{miss} T	∫£dt[ft	p ⁻¹]	Limit			0.3) 10	Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\ell\ell$ ADD QBH $\rightarrow \ell q$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \ell\ell$ RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW \rightarrow qq\ell\nu$ Bulk RS $G_{KK} \rightarrow HH \rightarrow bbbb$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	-2 e, μ 1 e, μ -2 e, μ 2 e, μ 2 γ 1 e, μ -1 1 e, μ 1 e, μ 1 e, μ	$\geq 1 j$ - 1 j 2 j $\geq 2 j$ $\geq 3 j$ - - 1 J 4 b $\geq 1 b, \geq 1 J/2$ $\geq 2 b, \geq 4 j$	Yes - - - - Yes - Yes Yes	3.2 20.3 3.6 3.2 3.6 20.3 20.3 3.2 3.2 20.3 3.2 20.3 3.2	MD MS Mth Mth Mth GKK mass GKK mass GKK mass GKK mass KK mass KK mass KK mass KK mass KK mass	1.06 TeV 480-770 GeV 1.4	4.7 4.7 2.68 TeV 2.66 TeV 7 2.2 TeV 46 TeV	6.58 TeV 7 TeV 5.2 TeV 8.3 TeV 8.2 TeV 9.55 TeV	$\begin{array}{l} n=2\\ n=3 \; \text{HLZ}\\ n=6\\ n=6\\ n=6, \; M_D=3 \; \text{TeV, rot BH}\\ n=6, \; M_D=3 \; \text{TeV, rot BH}\\ k/\overline{M}_{Pl}=0.1\\ k/\overline{M}_{Pl}=0.1\\ k/\overline{M}_{Pl}=1.0\\ BR=0.925\\ \text{Tier (1,1), } BR(A^{(1,1)}\rightarrow tt)=1 \end{array}$	1604.07773 1407.2410 1311.2006 1512.01530 1606.02265 1512.02586 1405.4123 1504.05511 ATLAS-CONF-2015-075 1606.04782 1505.07018 ATLAS-CONF-2016-013
Gauge bosons	$\begin{array}{l} \operatorname{SSM} Z' \to \ell\ell \\ \operatorname{SSM} Z' \to \tau\tau \\ \operatorname{Leptophobic} Z' \to bb \\ \operatorname{SSM} W' \to \ell\nu \\ \operatorname{HVT} W' \to WZ \to qq\nu\nu \ \mathrm{model} \ A \\ \operatorname{HVT} W' \to WZ \to qqqq \ \mathrm{model} \ A \\ \operatorname{HVT} W' \to WZ \to qqqq \ \mathrm{model} \ B \\ \operatorname{HVT} Z' \to ZH \to \nu\nu bb \ \mathrm{model} \ B \\ \operatorname{LRSM} W'_R \to tb \\ \operatorname{LRSM} W'_R \to tb \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 1 \ e, \mu \\ 0 \ e, \mu \\ A \\ 0 \ e, \mu \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 0 \ e, \mu \end{array}$	- 2 b - 1 J 2 J 1-2 b, 1-0 j 1-2 b, 1-0 j 2 b, 0-1 j ≥ 1 b, 1 J	- Yes Yes Yes Yes Yes	3.2 19.5 3.2 3.2 3.2 3.2 3.2 20.3 20.3	Z' mass Z' mass Z' mass W' mass W' mass W' mass Z' mass Z' mass W' mass	1.38	3.4 TeV 2.02 TeV 1.5 TeV 4.07 TeV 4.07 TeV 1.6 TeV 1.62 TeV 1.76 TeV 1.76 TeV 1.76 TeV	eV	$egin{aligned} g_V &= 1 \ g_V &= 1 \ g_V &= 3 \ g_V &= 3 \ g_V &= 3 \end{aligned}$	ATLAS-CONF-2015-070 1502.07177 1603.08791 1606.03977 ATLAS-CONF-2015-068 ATLAS-CONF-2015-073 ATLAS-CONF-2015-074 ATLAS-CONF-2015-074 1410.4103 1408.0886
C	Cl qqqq Cl qqℓℓ Cl uutt	2 e,μ 2 e,μ (SS)	2 j _ ≥ 1 b, 1-4 j	– – Yes	3.6 3.2 20.3	^ ^ ^		4.3	TeV	17.5 TeV $\eta_{LL} = -1$ 23.1 TeV $\eta_{LL} = -1$ $ C_{LL} = 1$	1512.01530 ATLAS-CONF-2015-070 1504.04605
MQ	Axial-vector mediator (Dirac DM) Axial-vector mediator (Dirac DM) ZZ _{XX} EFT (Dirac DM)	0 e,μ 0 e,μ, 1 γ 0 e,μ	≥1j 1j 1J,≤1j	Yes Yes Yes	3.2 3.2 3.2	m _A m _A M,	1.0 TeV 710 GeV 550 GeV			$\begin{array}{l} g_{q}{=}0.25, g_{\chi}{=}1.0, m(\chi) < 250 \; {\rm GeV} \\ g_{q}{=}0.25, g_{\chi}{=}1.0, m(\chi) < 150 \; {\rm GeV} \\ m(\chi) < 150 \; {\rm GeV} \end{array}$	1604.07773 1604.01306 ATLAS-CONF-2015-080
ΓO	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e,μ	≥ 2 j ≥ 2 j ≥1 b, ≥3 j	– – Yes	3.2 3.2 20.3	LQ mass LQ mass LQ mass	1.1 Te 1.05 TeV 640 GeV	v.		$egin{array}{lll} eta=1\ eta=1\ eta=1\ eta=1\ eta=0 \end{array}$	1605.06035 1605.06035 1508.04735
Heavy quarks	$\begin{array}{l} VLQ \ TT \rightarrow Ht + X \\ VLQ \ YY \rightarrow Wb + X \\ VLQ \ BB \rightarrow Hb + X \\ VLQ \ BB \rightarrow Zb + X \\ VLQ \ BB \rightarrow Zb + X \\ VLQ \ QQ \rightarrow WqWq \\ T_{5/3} \rightarrow Wt \end{array}$	1 e,μ 1 e,μ 1 e,μ 2/≥3 e,μ 1 e,μ 1 e,μ	$\begin{array}{l} \geq 2 \ b, \geq 3 \ j \\ \geq 1 \ b, \geq 3 \ j \\ \geq 2 \ b, \geq 3 \ j \\ \geq 2 \ b, \geq 3 \ j \\ \geq 2 / \geq 1 \ b \\ \geq 4 \ j \\ \geq 1 \ b, \geq 5 \ j \end{array}$	Yes Yes - Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3	T mass Y mass B mass B mass Q mass T _{5/3} mass	855 GeV 770 GeV 735 GeV 755 GeV 690 GeV 840 GeV			T in (T,B) doublet Y in (B,Y) doublet isospin singlet B in (B,Y) doublet	1505.04306 1505.04306 1505.04306 1409.5500 1509.04261 1503.05425
Excited fermions	Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow Wt$ Excited lepton ℓ^* Excited lepton ν^*	1γ 1 or 2 e, μ 3 e, μ 3 e, μ, τ	1 j 2 j 1 b, 1 j 1 b, 2-0 j - -	- - Yes -	3.2 3.6 3.2 20.3 20.3 20.3	q* mass q* mass b* mass b* mass /* mass v* mass		4.4 2.1 TeV 1.5 TeV 3.0 TeV 1.6 TeV	TeV 5.2 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $f_g = f_L = f_R = 1$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1512.05910 1512.01530 1603.08791 1510.02664 1411.2921 1411.2921
Other	LSTC $a_T \rightarrow W\gamma$ LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	1 e, μ, 1 γ 2 e, μ 2 e, μ (SS) 3 e, μ, τ 1 e, μ - -	- 2j - 1 b - - √s = 13	Yes - - Yes - - - TeV	20.3 20.3 20.3 20.3 20.3 20.3 20.3 7.0	aT mass N ⁰ mass H ^{±±} mass H ^{±±} mass spin-1 invisible particle mass multi-charged particle mass monopole mass 10-1	960 GeV 551 GeV 400 GeV 657 GeV 785 GeV 1.34	2.0 TeV		$m(W_R) = 2.4$ TeV, no mixing DY production, BR $(H_L^{\pm\pm} \rightarrow \ell \ell)=1$ DY production, BR $(H_L^{\pm\pm} \rightarrow \ell \tau)=1$ $a_{non-zes} = 0.2$ DY production, $ q = 5e$ DY production, $ g = 1g_D$, spin 1/2	1407.8150 1506.06020 1412.0237 1411.2921 1410.5404 1504.04188 1509.08059

*Only a selection of the available mass limits on new states or phenomena is shown. Lower bounds are specified only when explicitly not excluded. Small-radius (large-radius) jets are denoted by the letter i (.1)

Mass scale [TeV]

新物理模型的组分

- 1) 中微子质量: 味物理
- 2) 暗物质: 粒子宇宙学、超对称模型
- 3) 新费米子: 第四代, 新夸克, 新轻子
- 4) 新规范玻色子:新的对称性(新的力)
- 5) 新标量粒子: 电弱对称性破缺机制
- 6) 额外时空维度(如果时间允许)

1) 中微子质量起源

— 跷跷板机制 See-Saw Mechanics

有质量的中微子

中微子不能以光速运动 —> 螺旋度不再是好量子数 洛伦兹不变性要求:右手中微子 u_R $m \bar{\psi}_L \psi_R$

〕观测者

54

New particle ν_R (Dirac)

ν_L^T old anti-neutrino (Majorana)

* Dirac型中微子

* Majorana型中微子

 $m\bar{\psi}_L\psi_R$

 $m \overline{\psi}_L^c \psi_L$

不需要引入新的物质场

No fundamental distinction between neutrinos and anti-neutrinos

为何中微子质量如此之小?

跷跷板机制——简单优雅的解决方案

1) 加入一个新的 ν_R , (SM + ν_R) SM neutral not gauged under SU(2)xU(1)

2) 对角化中微子质量矩阵

 $\begin{pmatrix} \nu_L & \nu_R \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D & M \end{pmatrix} \begin{pmatrix} \nu_L \\ \nu_R \end{pmatrix}$

$$m_{\nu} = \frac{m_D^2}{M} \sim \frac{\text{TeV}^2}{M} \sim \text{ev}$$
$$M \sim \frac{\text{TeV}^2}{\text{eV}} = \frac{(10^3 \text{GeV})^2}{10^{-9} \text{GeV}} = 10^{15} \text{GeV}$$

跷跷板机制的种类 探测新物理的强力工具—有效场论

BSM (A) $\mathcal{L} = \mathcal{L}_{SM}^{(4)} + \frac{O^{(5)}}{\Lambda} + \frac{O^{(6)}}{\Lambda^2} + \cdots$ High dimensional operator $O^{(5,6,\cdots)}$ SM (m_W) are made of SM fields with respect to the SM symmetry

 $SU(2)\times U(1)_{Y}$

温伯格中微子质量算符 1979年温伯格指出标准模型中只存在一个量纲为5的算符 可以给中微子质量

 $\frac{(L\Phi)^2}{\Lambda} \qquad L = \begin{pmatrix} \nu \\ e \end{pmatrix} \qquad [L] = \frac{3}{2}$ $\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} \qquad [\Phi] = 1$

 $\mathcal{L}_{m_{\nu}} = -\frac{f_{ij}}{2\Lambda} \left(\nu_i \phi^0 - \ell_i \phi^+ \right) \left(\nu_j \phi^0 - \ell_j \phi^+ \right) + h.c.$ $(m_{\nu})_{ij} = \frac{f_{ij} \left\langle \phi^0 \right\rangle^2}{\Lambda} = \frac{f_{ij} v^2}{\Lambda}$

温伯格中微子质量算符 1979年温伯格指出标准模型中只存在一个量纲为5的算符 可以给中微子质量

 $\mathcal{L}_{m_{\nu}} = -\frac{f_{ij}}{2\Lambda} \left(\nu_i \phi^0 - \ell_i \phi^+\right) \left(\nu_j \phi^0 - \ell_j \phi^+\right) + h.c.$ $(m_{\nu})_{ij} = \frac{f_{ij} \left\langle \phi^0 \right\rangle^2}{\Lambda} = \frac{f_{ij} v^2}{\Lambda}$ $|\phi| = 1$ $[\nu] = 3/2$ ϕ^0 $,\phi^{c}$ ϕ^{c} 什么样的 u_L ${\cal V}_L$ $\mathcal{V}_{\mathcal{I}}$ $\mathcal{V}_{\mathcal{I}}$

新物理?

$$\begin{pmatrix} \uparrow \\ \downarrow \end{pmatrix}_1 \otimes \begin{pmatrix} \uparrow \\ \downarrow \end{pmatrix}_2 = \begin{pmatrix} \uparrow_1 \uparrow_2 \\ \frac{1}{\sqrt{2}} \left(\uparrow_1 \downarrow_2 + \downarrow_1 \uparrow_2\right) \\ \downarrow_1 \downarrow_2 \end{pmatrix} \oplus \frac{1}{\sqrt{2}} \left(\uparrow_1 \downarrow_2 - \downarrow_1 \uparrow_2\right)$$

标准模型 SU(2)xU(1)

$$(L\Phi) = \begin{pmatrix} \nu \\ \ell \end{pmatrix} \otimes \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \begin{pmatrix} \sqrt{2}\nu\phi^+ \\ \frac{\nu\phi^0 + \ell\phi^+}{\sqrt{2}\ell\phi^0} \end{pmatrix} \oplus (\frac{\nu\phi^0 - \ell\phi^+}{\sqrt{2}\ell\phi^0})$$

$$2 \otimes 2 = 3 \oplus 1$$

2

 $(L\Phi$

 $\vec{J} = \vec{L}_1 + \vec{L}_2$ $|J| = |L_1 - L_2|, \cdots, L_1 + L_2$

中微子跷跷板模型的对撞机信号

第1类和第3类树图跷跷板模型:

困难: 跷跷板能标非常高,~10¹⁵ GeV 右手中微子非常重,耦合微弱,难以探测

方法之一:引入U(1)_{B-L}的超对称扩充模型, 将跷跷板能标压低到TeV

中微子跷跷板模型的对撞机信号

第2类树图跷跷板模型:

* 轻的标量三重态粒子

* 重标量三重态粒子唯象学依赖于衰变分支比

2. 暗物质 (粒子宇宙学)

-ŽÍK TA K

暗物质 (Dark Matter)

67

暗物质候选者之一

作用力微弱的大质量粒子 (Weakly interacting massive Particle)

1) 宇宙早期暗物质和可见物质处于热力学平衡态

2) 宇宙膨胀(温度降低,暗物质变为非相对论性)

3) 暗物质热力学退耦

暗物质残留丰度

Weakly interacting massive particles at the weak scale! 神奇的巧合!理论家的最爱!

暗物质直接探测

暗物质直接探测

自旋无关的散射 $\bar{\chi}\gamma_{\mu}\chi\bar{q}\gamma^{\mu}q$

自旋相关的散射 $\bar{\chi}\gamma_{\mu}\gamma_{5}\chi\bar{q}\gamma^{\mu}\gamma_{5}q$

World Wide Dark Matter Searches

暗物质间接测量

暗物质在宇宙中湮灭产生正反电子,正反质子,光子,中微子

Cosmic Gamma-Ray

$\eta\eta ightarrow WW, ZZ, \cdots$ in the Galactic halo

暗物质对撞机信号

80

暗物质对撞机信号示例

Minimal
 Supersymmetric extension of the Standard Model (MSSM)

$$g \underbrace{00000}_{\tilde{t}} \underbrace{\tilde{t}}_{\tilde{t}} \underbrace{\tilde{\chi}_{0}}_{\tilde{t}} t$$

spin 0

- Little Higgs Model with T-parity (LHT)
- Universal Extra Dimension Model (UED)

spin 1/2

暗物质的稳定性 (示例: 超对称模型)

暗物质的稳定性 通常通过引入离散对称性(例如 Z₂)来保证暗物质的绝对稳定 DM (-) SM (+) SM (+) SM (+) DM (-) SM (+) SM (+) SM (-) DM (-) SM (-) SM (-) SM (+) 暗物质不能衰变到标准模型粒子 SM不能是Z2-odd 83

R-宇称守恒的超对称理论

 $R = (-1)^{3(B-L)+2S}$

最小超对称模型: 5个标量粒子

$$\Phi_1 = \begin{pmatrix} H_1^0 \\ H_1^- \end{pmatrix} \qquad \Phi_2 = \begin{pmatrix} H_2^+ \\ H_2^0 \\ H_2^0 \end{pmatrix}$$

$$\langle \Phi_1 \rangle = \begin{pmatrix} v_1 \\ 0 \end{pmatrix} \quad \langle \Phi_2 \rangle = \begin{pmatrix} 0 \\ v_2 \end{pmatrix}$$

$$h, H, A, H^+, H^-$$

Count degree of freedom:

Massless gauge bosons have 2 transverse d.o.f. Massive gauge bosons also have longitudinal d.o.f.

Before SSB		After SSB	
Massless $W_{\mu}^{i=1,2,3}, B_{\mu}$	8	Massive W^{\pm}, Z	9
Complex Φ_u, Φ_d	8	Massless Y	2
Total	16	Complex h, H, A, H^{\pm}	5
		Total	16

荷电的希格斯粒子: 确凿无疑的新物理信号

 $H^{\pm}H^{\mp}$ production

 $H^{\pm}A/H/h$ production

$H^{-}t$ production

Neutralino: Lightest SUSY Particle (LSP) 暗物质候选者

|最小超对称模型过程 $gg o \widetilde{t} \widetilde{t}$ (暂不考虑stop夸克的混合)

 $g \underbrace{\operatorname{ooo}}_{g} \underbrace{\overline{\tilde{t}}}_{\tilde{t}} \underbrace{\overline{\tilde{t}}}_{\tilde{t}} \underbrace{\operatorname{ooo}}_{\tilde{t}} \underbrace{\overline{\tilde{t}}}_{\tilde{t}} \underbrace{\overline{\tilde{t}}} \underbrace{\overline{\tilde{t}}}_{\tilde{t}} \underbrace{\overline{\tilde{t}}} \underbrace{\overline{\tilde{t}}}_{\tilde{t}} \underbrace{\overline{\tilde{t}}} \underbrace{$

|最小超对称模型过程 $gg
ightarrow \widetilde{t} \widetilde{t}$ (暂不考虑stop夸克的混合)

一般性的费曼顶点结构

忽略有关的

耦合常数和

实验数据限制。

我们通常考虑 非对称性的 超对称粒子 衰变模式来 提高搜寻能力。

Stop-夸克对的产生和衰变

先不考虑 具体的理论要求和 实验数据限制。

我们通常考虑 非对称性的 超对称粒子 衰变模式来 提高搜寻能力。

Stop-夸克对的产生和衰变

先不考虑 具体的理论要求和 实验数据限制。

我们通常考虑 非对称性的 超对称粒子 衰变模式来 提高搜寻能力。

3. 新费米子

如果自然界只有3代费米子,那我们需要知道为什么。

自旋1/2 自旋1/2 自旋1

3代夸克的CKM混合矩阵

4代夸克的CKM混合矩阵

 $V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} & V_{ub'} \\ V_{cd} & V_{cs} & V_{cb} & V_{cb'} \\ V_{td} & V_{ts} & V_{tb} & V_{tb'} \\ V_{t'd} & V_{t's} & V_{t'b} & V_{t'b'} \end{pmatrix}$

幺正性被放宽 —— $V_{tb} < 1$

手征性费米子——规范反常问题

标准模型中每一代费米子都消除规范反常

□ <u>Chiral doublet</u>

 $-\mathcal{L}_Q = Y_U^{ij} \bar{Q}_L \tilde{\Phi} U_R + Y_D^{ij} \bar{Q}_L \Phi D_R + h.c.$

□ SU(2) doublet

$$-\mathcal{L}_{Q} = Y_{t} \overline{q_{0L}} \widetilde{\Phi} t_{0R} + Y_{T} \overline{Q_{0L}} \widetilde{\Phi} t_{0R} + Y_{B} \overline{Q_{0L}} \Phi b_{0R} + M \overline{Q_{0L}} Q_{0R} + \text{H.c.}$$
$$-\mathcal{L}_{Q'} = Y_{t} \overline{q_{0L}} \widetilde{\Phi} t_{0R} + Y_{T} \overline{Q'_{0L}} \Phi t_{0R} + M \overline{Q'_{0L}} Q'_{0R} + \text{H.c.}$$
$$Q_{0L} = \begin{pmatrix} T_{0L} \\ B_{0L} \end{pmatrix}, \ Q_{0R} = \begin{pmatrix} T_{0R} \\ B_{0R} \end{pmatrix} \quad Q'_{0L} = \begin{pmatrix} X_{0L} \\ T_{0L} \end{pmatrix}, \ Q'_{0R} = \begin{pmatrix} X_{0R} \\ T_{0R} \end{pmatrix}$$

SU(2) triplet

Exotic Q=5/3 fermion

101

$$-\mathcal{L}_{\Sigma} = Y_t \,\overline{q_{0L}} \,\widetilde{\Phi} \, t_{0R} + Y_T \,\overline{q_{0L}} \,\tau^a \,\widetilde{\Phi} \,\Sigma_{0R} + M \,\overline{\Sigma_{0L}} \Sigma_{0R} + \text{H.c.}$$
$$-\mathcal{L}_{\Sigma'} = Y_t \,\overline{q_{0L}} \,\widetilde{\Phi} \, t_{0R} + Y_T \,\overline{q_{0L}} \,\tau^a \,\Phi \,\Sigma'_{0R} + M \,\overline{\Sigma'_{0L}} \Sigma'_{0R} + \text{H.c.}$$

$$\Sigma_{0L} = \begin{pmatrix} X_{0L} \\ T_{0L} \\ B_{0L} \end{pmatrix}, \ \Sigma_{0R} = \begin{pmatrix} X_{0R} \\ T_{0R} \\ B_{0R} \end{pmatrix}, \ \Sigma'_{0L} = \begin{pmatrix} T_{0L} \\ B_{0L} \\ X_{0L} \end{pmatrix}, \ \Sigma'_{0R} = \begin{pmatrix} T_{0R} \\ B_{0R} \\ X_{0R} \end{pmatrix}$$

Heavy Quarks, 20-21 Dec 2011

Koji Tsumura (ntu)

Exotic Q=-4/3 fermion

实验结果

4. 新规范玻色子

一理论的破缺

将已知的强、弱、电磁 三种相互作用统一起来 是粒子物理学家的梦想。

新规范玻色子(额外的力)是大统一模型的必要成分,是对称性破缺的产物。

新规范玻色子: 额外的"力"

G(221) Model

$SU(3)_C \times SU(2)_1 \times SU(2)_2 \times U(1)_X$

 $\overline{SU(3)_C} \otimes \overline{SU(2)_1} \otimes \overline{SU(2)_2} \otimes \overline{U(1)_X}$

Model	$SU(2)_1$	$SU(2)_2$	$U(1)_X$
Left-right (LR)	$\begin{pmatrix} u_L \end{pmatrix}, \begin{pmatrix} \nu_L \end{pmatrix}$	$\left(u_{R} \right) \left(\nu_{R} \right)$	$\frac{1}{6}$ for quarks,
	$\left(d_L \right) \left(e_L \right)$	$\left(d_{R} \right)^{\prime} \left(e_{R} \right)$	$-\frac{1}{2}$ for leptons.
Lepto-phobic (LP)	$\begin{pmatrix} u_L \end{pmatrix} \begin{pmatrix} \nu_L \end{pmatrix}$	$\left(u_{R}\right)$	$\frac{1}{6}$ for quarks,
	$\left(d_{L} \right)$ ' $\left(e_{L} \right)$	$ \begin{array}{c c} SU(2)_{2} \\ \hline \begin{pmatrix} u_{R} \\ d_{R} \end{pmatrix}, \begin{pmatrix} \nu_{R} \\ e_{R} \end{pmatrix} \\ \hline \begin{pmatrix} u_{R} \\ d_{R} \end{pmatrix} \\ \hline \begin{pmatrix} \nu_{R} \\ e_{R} \end{pmatrix} \\ \hline \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} \\ \hline \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix}, \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} \\ \hline \end{pmatrix} $	$Y_{\rm SM}$ for leptons.
Hadro-phobic (HP)	$\begin{pmatrix} u_L \end{pmatrix} \begin{pmatrix} \nu_L \end{pmatrix}$	$ \begin{pmatrix} d_R \\ \begin{pmatrix} \nu_R \\ e_R \end{pmatrix} $	$Y_{\rm SM}$ for quarks,
	$\left \begin{array}{c} dro-phoble (\Pi P) \\ d_L \end{array} \right , \left \begin{array}{c} e_L \end{array} \right \left \begin{array}{c} e_R \end{array} \right $	$\left\langle e_{R}\right\rangle$	$-\frac{1}{2}$ for leptons.
Fermio-phobic (FP)	$\begin{pmatrix} u_L \\ d_L \end{pmatrix}, \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$		$Y_{\rm SM}$ for all fermions.
Un-unified (UU)	$\begin{pmatrix} u_L \\ d_L \end{pmatrix}$	$\begin{pmatrix} u_L \\ e_L \end{pmatrix}$	$Y_{\rm SM}$ for all fermions.
Non-universal (NU)	$\begin{pmatrix} u_L \\ d_L \end{pmatrix}_{1^{\text{st}}, 2^{\text{nd}}}, \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}_{1^{\text{st}}, 2^{\text{nd}}}$	$\begin{pmatrix} u_L \\ d_L \end{pmatrix}_{3^{\mathrm{rd}}}, \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}_{3^{\mathrm{rd}}}$	$Y_{\rm SM}$ for all fermions.

06

$SU(3)_C \otimes SU(3)_W \otimes U(1)_X$ $SU(3) \times U(1)_X \xrightarrow{H_1} SU(2)_L \times U(1)_Y \xrightarrow{H_2} U(1)_{em}$ $\begin{pmatrix} u \\ d \\ D \end{pmatrix} \begin{pmatrix} c \\ s \\ S \end{pmatrix} \begin{pmatrix} 0 \\ -t \\ T \end{pmatrix}$ 3 3 $\left| \langle \rho \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_{\rho} \\ 0 \end{pmatrix} \right| \left\langle \eta \right\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} v_{\eta} \\ 0 \\ 0 \end{pmatrix} \left\langle \chi \right\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 0 \\ v_{\gamma} \end{pmatrix}$ 规范反常相消要求有三代费米子, 第1代+第2代的反常之和抵消第3代反常

Z-prime产生和衰变

W-prime产生和衰变

$SU(3)_1 \times SU(3)_2 \to SU(3)_C$

q=u,d,C,S

10

Model	$SU(3)_1$	$SU(3)_2$	
Classic Axigluon	$t_R \ b_R \ q_R$	$q_L (t,b)_L$	dijet, AFB(t)
New Axigluon	$q_L t_R b_R$	$(t,b)_L q_R$	dijet, AFB(t)
Topgluon	$q_L q_R$	$(t,b)_L t_R b_R$	dijet, FCNC

对称性破缺要求: 额外的带色标量粒子

色标量粒子产生和衰变

为什么希格斯粒子质量为125GeV? 费米子和玻色子质量起源是否相同? 大CP破坏产生机制? 为何仅有3代夸克和轻子? 是否有4代物质场粒子? 能否把自然界中所有力统一? 是否存在新相互作用? 夸克和轻子是否有内部结构? 暗物质的内禀属性及其相互作用? 什么是暗能量? 是否有额外的空间维度?

13