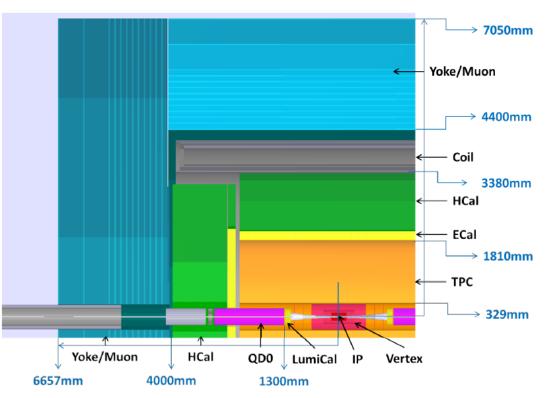
Summary of the CEPC Physics and Detector

Haijun Yang (Shanghai Jiao Tong University) (for CEPC Physics and Detector Working Group)

> CEPC-SPPC Study Group, Beihang September 3, 2016

CEPC Physics & Detector Sessions

Three parallel sessions: 2	16 talks	S Parallel Session I: Physics&detector Convener: Prof. Shan Jin (IHEP)		
Two joint sessions:	Location: Conference Room 8 11:00 Full silicon tracking studies for CEPC 20' Speaker: Dr. Weiming Yao (LBNL)			
 Theory + Simulation 	Material: Slides 🖄			
 Detector + Accelerator 		11:40 Speaker: Dr. Huirong Qi (Institute of High Energy Physics, CAS)		
Parallel Session II: Physics&Detecor Convener: Prof. Nu Xu (CCNU) Location: Conference Room 8 14:00 PID Status 15' Speaker: Dr. Zhiyong Zhang (USTC) 14:15 ECAL Status 15' Speaker: Dr. Yunlong Zhang (USTC) 14:30 HCAL Status 15'	Convener: P Location: C 16:20 Phy Spec 16:40 Pixe Spec	ession III: Physics&Detecor Prof. Haijun Yang (SJTU) Conference Room 8 hysics simulations and SW tools 20' beaker: Prof. Patrizia AZZI (INFN/CERN) xels and short strips 20' beaker: Dr. Massimo Caccia (INFN)		
4:45 High rate high granuarity GRPC SDHCAL 15' Speaker: Prof. Yi Wang (Tsinghua University) 17:20 Next (Speaker)		Auon systems with MPGD 20' Speaker: Dr. Paolo Giacomelli (INFN Bologna) Jext u-strip tracking systems 20' Speaker: Prof. Livio Fano' (Università degli Studi di Perugia and INFN)		
 15:00 questions+discussions for CEPC HCAL 5' 15:05 Magnet Status 15' Speaker: Dr. Ling Zhao (IHEP) 	17:40 An	n ultra-light drift chamber with particle identification capabilities 20' peaker: Prof. Franco Grancagnolo (Università del Salento and INFN)		
 15:20 Understanding the performance of a highly grant Speaker: Prof. Stathes Paganis (National Taiwan Univers 15:40 Research and Development on Signal Detection a Speaker: Prof. Lianming Li 	ity)			
2016/09/03		2 CEPC Physics & Detector - H. Yang @ SJTU		

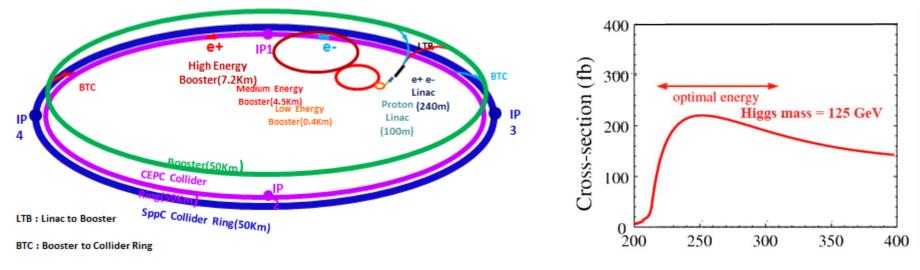

Outline

CEPC Physics Motivation

CEPC Conceptual Detector Design

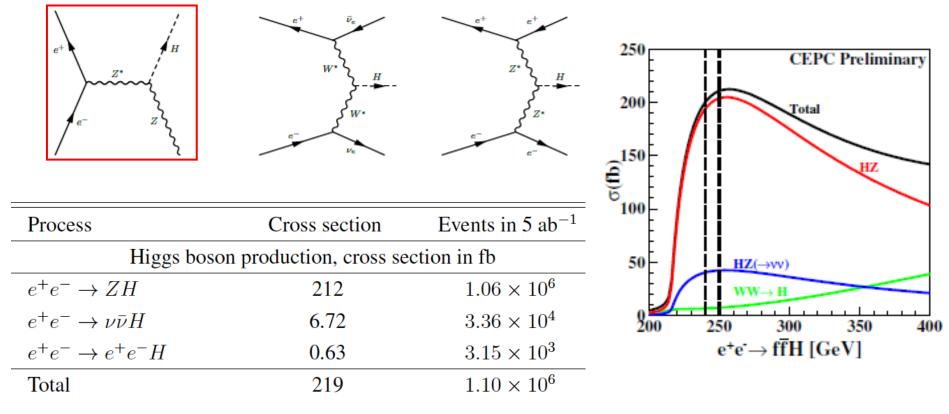
- MDI
- Vertex
- Tracker
- ECAL
- HCAL
- Muon
- Magnet

Summary

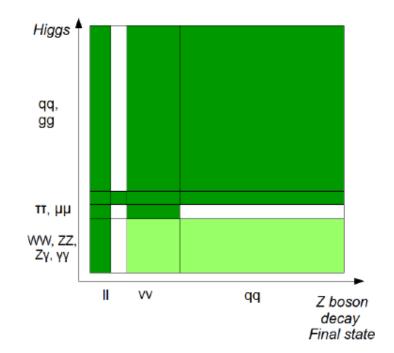


CEPC-SPPC

Phase 1: e⁺e⁻ Higgs (Z) factory two detectors, 1M ZH events in ~10yrs Circular Electron Positron Collider (CEPC) E_{cm}≈240GeV, luminosity ~2×10³⁴ cm⁻²s⁻¹ can also rum at the Z-pole Precision measurement of the Higgs boson (and the Z boson)


Phase 2: a discovery machine; pp collision with $E_{cm} \approx 50-100$ TeV; ep, HI options Super proton-proton Collider (SppC)

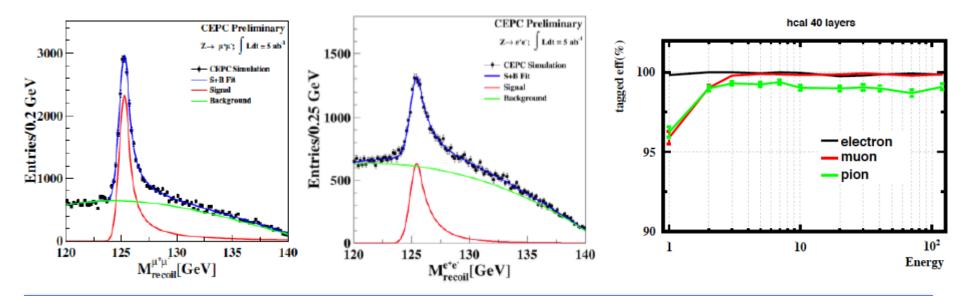
Higgs @ CEPC


- Precise measurements of the Higgs properties as a Higgs Factory (similar to ILC@250 GeV)
 - \Box Mass, CP, cross section, BR, width, couplings, etc. \rightarrow percentage accuracy

Status of Higgs Analysis

M.Q. Ruan, G. Li, Y.Q. Fang et.al.

Precision measurements at full simulation level.


~o(50) independent analyses, mostly studied Full Simulation level

	PreCDR (Jan 2015)	Now (Aug 2016)
σ(ZH)	0.51%	0.50%
$\sigma(ZH)^*Br(H \rightarrow bb)$	0.28%	0.21%
$\sigma(ZH)^*Br(H \rightarrow cc)$	2.1%	2.5%
$\sigma(ZH)^*Br(H \rightarrow gg)$	1.6%	1.3%
$\sigma(ZH)^*Br(H \rightarrow WW)$	1.5%	1.0%
$\sigma(ZH)^*Br(H{ ightarrow}ZZ)$	4.3%	4.3%
$\sigma(ZH)^*Br(H \rightarrow \tau \tau)$	1.2%	1.0%
$\sigma(ZH)^*Br(H{ ightarrow}\gamma\gamma)$	9.0%	9.0%
$\sigma(ZH)^*Br(H{\rightarrow}Z\gamma)$	-	~4 o
σ(ZH)*Br(H→μμ)	17%	17%
$\sigma(vvH)^*Br(H \rightarrow bb)$	2.8%	2.8%
Higgs Mass/MeV	5.9	5.0
σ(ZH)*Br(H→inv)	95%. CL = 1.4e-3	1.4e-3
Br(H→ee/emu)	-	1.7e-4/1.2e-4
Br(H→bbχχ)	<10 ⁻³	3.0e-4

Detector Simulation & Optimization

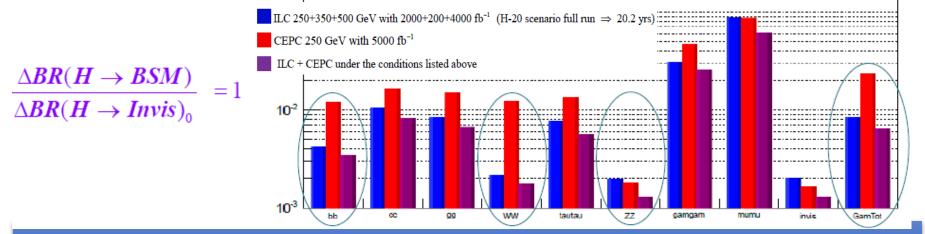
		CEPC_v1, ILD	Test Geo 1	TG 2	TG 3
ECAL	Cell Size/mm	5	10	20	20
	# Layers	30	30	30	20
HCAL	Cell Size/mm	10	10	20	20
	# Layers	48	48	48	20
Ratio of Channels	ECAL	1	1/4	1/16	1/24
(X/ILD)	HCAL	1	1	1/4	1/10
Event Recon.	$\mu\mu$ H	95.7%*	9 8. 0%	9 6. 5%	95.2%
Efficiency	eeH	91 .1%*	89.6%	8 9.1%	74.5%(???)

To develop general lepton ID for calorimeter with high granularity (LICH) – Dan Yu et.al

Model Independent Meas. of Br(H→BSM) Tim Barklow (SLAC)

$$\left(\frac{\Delta\sigma(ZH)_{hadronic}}{\sigma(ZH)_{hadronic}}\right)^{2} = \frac{S+B}{B} \left\{ 1 + \frac{(L\sigma_{ZH})^{2}}{S+B} \sum_{i} BR_{i}^{2} \left[\left(\frac{\Delta\sigma \bullet BR_{i}}{\sigma \bullet BR_{i}}\right)^{2} (\xi_{i} - \langle \xi \rangle)^{2} + \Delta\xi_{i}^{2} \right] \right\}$$

Penalty for non-uniform efficiency


MC calculation

- $\xi_i = \text{efficiency for events from H decay i to pass } \sigma(ZH)_{hadronic}$ analysis
- S = Number of signal events in $\sigma(ZH)_{hadronic}$ analysis
- B = Number of background events in $\sigma(ZH)_{hadronic}$ analysis

Further improvement in the Higgs coupling measurements can be obtained using the constraint $\sum BR_i = 1$ as first noted by Michael Peskin.

This constraint is model independent so long as the error in $BR(H \rightarrow BSM)$ is included in the fit. What error in $BR(H \rightarrow BSM)$ is

required to produce an improvement in Higgs coupling measurements ?

Perform coupling fit with $\sum BR_i = 1$ including $\Delta BR(H \rightarrow BSM)$

(the constraint $\sum_{i} BR_{i} = 1$ is model independent if $\Delta BR(H \rightarrow BSM)$ is included in the fit)

CEPC Higgs Coupling Precision assuming 5 ab⁻¹

$\Delta BR(H \to BSM)$	~	8	4	2	1	0.1
$\Delta BR(H \rightarrow Invis)_0$	~	0	-	2		0.1
ZZ	0.26%	0.24%	0.22%	0.19%	0.18%	0.17%
WW	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%
bb	1.3%	1.3%	1.2%	1.2%	1.2%	1.2%
$ au^+ au^-$	1.4%	1.4%	1.4%	1.4%	1.3%	1.3%
<i>gg</i>	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%
сс	1.7%	1.7%	1.7%	1.6%	1.6%	1.6%
YY	4.7%	4.7%	4.7%	4.7%	4.7%	4.7%
Γ_{tot}	2.8%	2.7%	2.5%	2.4%	2.3%	2.3%

 $\Delta BR(H \to Invis)_0 \text{ corresponds to the 5 ab^{-1} CEPC 95\% CL limit of 0.28\%}$ 40% improvement in Δg_z if $\Delta BR(H \to BSM) \approx \Delta BR(H \to Invis)$

Physics Interest of Italy Group for FC

« FC » Italy

Patrizia Azzi (INFN, Padova)

New INFN Budget Line for « Future Collider » grouping together people interested in future machines to profit of the synergies: ILC,CLIC,FCC,CepC,SppC,MuColl

Bari M. Abbrescia, N. De Filippis, Bologna L. Bellagamba, D. Boscherini, S. Braibant, P. Giacomelli, P. Alessandro Ferrara R. Camattari, G. Cibinetto, V. Guidi, A. Mazzolari Lecce C. Esposito, F. Grancagnolo, A. Maffezzoli, M. Panareo, G.F. Tassielli, G. Zavarise

Laboratori Nazionali di Frascati M. Antonelli, M.E. Biagini, G. O. Blanco, M. Boscolo, F. Collamati, S. Dabagoy, S. Guiducci, M. Rotondo, M. Testa

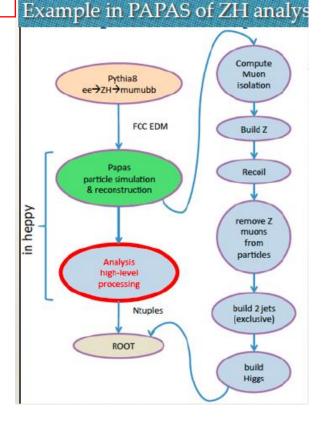
Milano A. Andreazza, M. Caccia, C. Curatolo, S. Romualdo, L. Serafini

Padova P. Azzi, N. Bacchetta, A. Bertolin, P. Checchia, D. Lucchesi, A. Lupato, M. Morandin, R. Rossin, L. Sestini, M. Zanetti

P. Azzi - Cepc/SppS Workshop, Bejing, 2016

Perugia G. Mario Bilei, C. Cecchi, L. Fano', F. Moscatelli, D. Passeri, A. Rossi

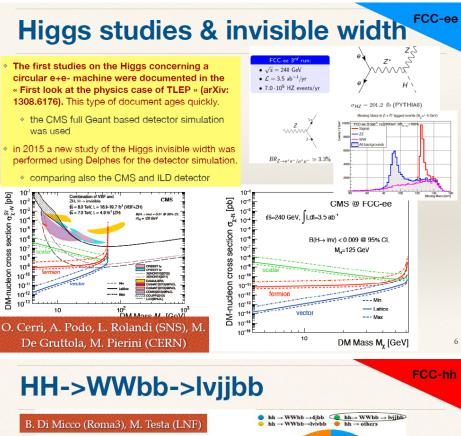
Pisa F. Bedeschi, V. Cavasinni, C. Roda, R. Tenchini, G.E. Tonelli Pavia G. Introzzi, G. Polesello, P. Salvini

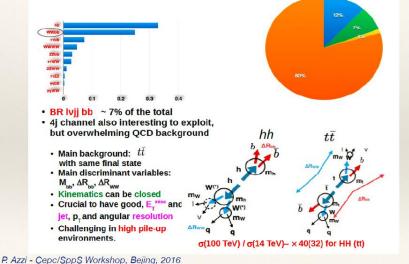

Roma1 F. Anulli, G. Campogiani, M. Marongiu, L. Palumbo

Roma3 M. Biglietti, B. Di Micco,A. Farilla

Trieste A. Bressan, M. Cobal, S. Dalla Torre, S. Dasgupta, S. Levorato, A. Martin, F. Tessarotto

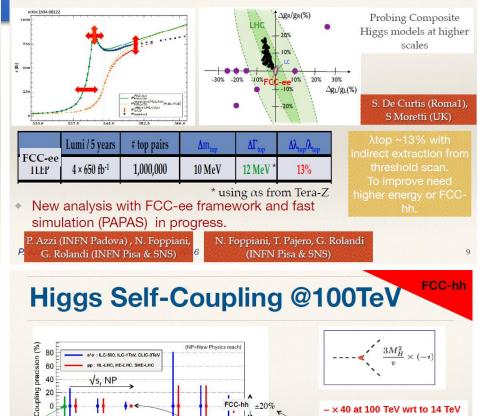
In this list are not included the theory colleagues, nor the students/postdocs without a permanent contract.


3



Strong collaboration across sevearl experiments ATLAS/CMS/LHCb/CLIC!

http://fccsw.web.cern.ch/fccsw/


http://github.com/HEP-FCC: open source code on GitHub

FCC-ee Expertise on top physics at lepton collide

At the Js=of 350-365 GeV could measure top mass, top width, EWK \$ couplings and estimate of top Yukawa

~ × 40 at 100 TeV wrt to 14 TeV

\sqrt{s} [TeV]	$\sigma^{\rm NLO}$ [fb]
8	8.2
14	33.9
33	207.3
100	1417.8

	HL-LHC	ILC500	ILC500-up	ILC1000	ILC1000-up	CLIC1400	CLIC3000	HE-LHC	VLHC
\sqrt{s} (GeV)	14000	500	500	500/1000	500/1000	1400	3000	33,000	100,000
dt (fb ⁻¹)	3000	500	1600 [±]	500/1000	$1600/2500^{\ddagger}$	1500	+2000	3000	3000
λ	50%	83%	46%	21%	13%	21%	10%	20%	8%
	4%	14%		4%	2%	4%	<4%	3%	1%

FCC-hh ±20%

J. Wells et al.

arXiV:1305.6397

12

CLIC₃TeV, VHE-LHC

√s, NP

HHH

P. Azzi - Cepc/SppS Workshop, Bejing, 2016

Htt

ILC1TeV, HE-LHC

0

-40 -60

-80 HE2012

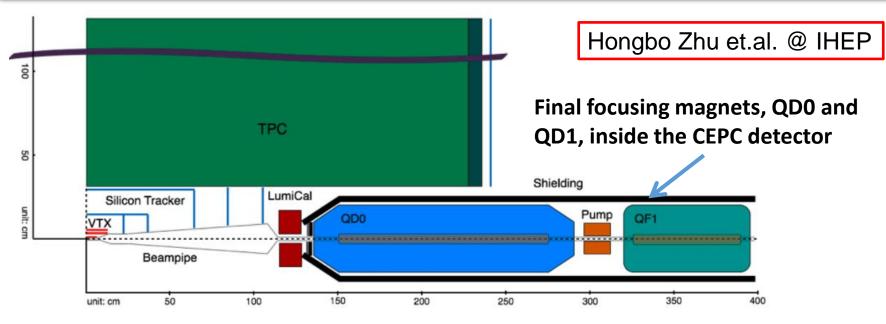
ILC500, HL-LHC

FCC-ee

12

Requirements for CEPC Detector Design

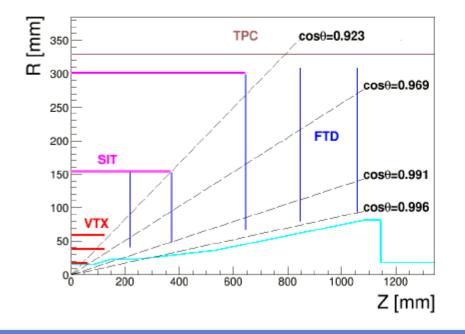
Critical Physics Benchmarks for Detectors design.


CEPC preCDR, http://cepc.ihep.ac.cn/preCDR/volume.html

Physics Process	Measured Quantity	Critical Detector	Required Performance
$ZH \to \ell^+ \ell^- X$	Higgs mass, cross section	- Tracker	$\Delta(1/p_{\rm T})\sim 2\times 10^{-5}$
$H \to \mu^+ \mu^-$	$BR(H \to \mu^+ \mu^-)$		$\oplus 1 \times 10^{-3}/(p_{\rm T}\sin\theta)$
$H \to b\bar{b}, \ c\bar{c}, \ gg$	$BR(H \to b\bar{b}, c\bar{c}, gg)$	Vertex	$\sigma_{r\phi} \sim 5 \oplus 10/(p \sin^{3/2} \theta) \ \mu \mathrm{m}$
$H \to q\bar{q}, V^+V^-$	$BR(H \to q\bar{q}, V^+V^-)$	ECAL, HCAL	$\sigma_E^{ m jet}/E\sim 3-4\%$
$H \to \gamma \gamma$	$\mathrm{BR}(H \to \gamma \gamma)$	ECAL	$\sigma_E \sim 16\%/\sqrt{E} \oplus 1\%~({\rm GeV})$

- ILD-like, with modifications/considerations
 - No push-and-pull -> Less Yoke
 - Shorter L*=1.5m → Challenges for MDI
 - Power pulsing not possible → less power consumption

+ active cooling


CEPC Machine Detector Interface (MDI)

- Short focal length (L*=1.5m, cf. ~3.5m at ILC), to allow realization of high luminosity.
- Final focusing magnets inside the detector → constraint on the detector design and QD0/QF1 + LumiCal designs
- Comprehensive understanding and optimization of both detector and collider performance are needed in future studies

CEPC Vertex and Silicon Tracker

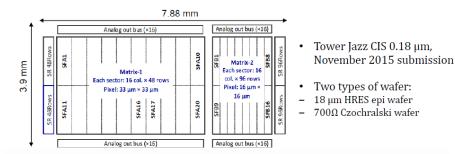
Ouyang Qun, M. Wang et.al.

Vertex detector:

 3 cylindrical and concentric double-layers of pixels

Performance requirements with 3.5 T field

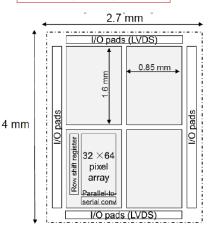
$$\sigma_{1/p_T} = 2 \times 10^{-5} \oplus 1 \times 10^{-3} / (p_T \sin \theta)$$
$$\sigma_{r\phi} = 5 \mu m \oplus \frac{10}{p (GeV) \sin^{3/2} \theta} \mu m$$


Goal: to develop fine pitch, Low power, fast pixel sensor + light structure

CEPC Vertex and Silicon Tracker R&D

14

First CPS prototype design


- Goals: sensor optimization and in-pixel pre-amplifier study
- Floorplan overview:
 - Two independent matrices: Matrix-1 with $33 \times 33 \,\mu\text{m}^2$ pixels (except one sector SFA20 with $16 \times 16 \,\mu\text{m}^2$ pixels), Matrix-2 with $16 \times 16 \,\mu\text{m}^2$ pixels.
 - Matrix-1 includes 3 blocks with in-pixel pre-amplifier
 - SFA20 in Matrix-1 contains pixel with AC-coupled pixels

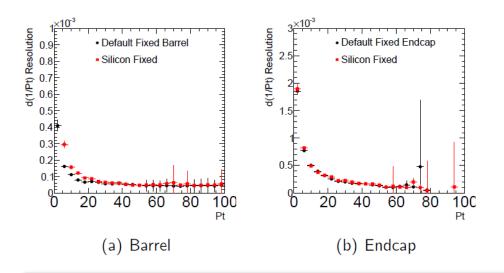
Second CPS prototype - pixel design

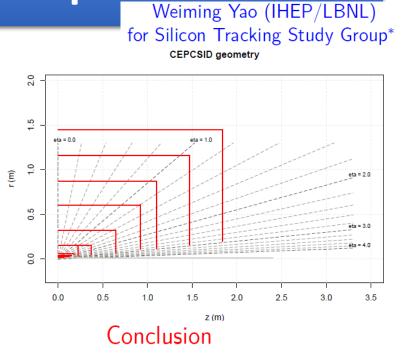
Y. Zhang, Y. Yang (IHEP)

- Purpose: small-size digital pixel design verification
- Proposed floor plan:
- 4 sub-matrices with different pixel structures, each matrix with 32 columns by 64 rows pixels
- Pixel size: less than $22 \times 22 \,\mu m^2$
- Each pixel contains a sensing diode, a pre-amplifier and a discriminator

28

Second SOI pixel prototype design Y. Lu, Y. Yang (IHEP) CPV2 - In-pixel CDS stage inserted - To improve RTC and FPN noise - To replace the charge injection threshold CNPIX1 IHEP/KEK - Submitted June, 2016 Pixel Layout: $16 \times 16 \,\mu m^2$ Beihang U., Sept.2nd 2016 Status report of vertex detector @ CEPC-SppC study group meeting 25


Summary and outlook


- R&D started along the baseline design specifications
- Pixel sensors design submitted
 - CPS diode optimization
 - SOI sensors with small pixel size
- 2nd CPS prototype design in progress
 - More in-pixel electronics
 - New readout architecture
- _____ Test system in preparation and sensor characterization will start soon
- Overall sensor architecture in consideration
- Optimization study of vertex system needed
- Double-sided and light supporting structure, cooling,...
- Possible change of sensor design
 - Beam related background level
 - Impact of partial-double ring scheme, with time-stamp of microsecond
 - Impact of Z⁰ pole running

Full Silicon Tracker Concept for CEPC

- Based on CEPC V1 silicon elements, we replace TPC with additional SIT layers and FTD endcaps.
- Generated single muon in CEPC full silicon.
- Reconstructed using Marlin Silicon only.
- Modifying pattern recognition to use more silicon layers.

*http://cepc.ihep.ac.cn/ cepc/cepc_twiki/index.php/Pure_Silicon_Detector

- The concept of full silicon tracker has been implemented and seems working.
- Its single particle performance is comparable to CEPC V1, meeting the physics requirements.
- There are rooms for improvement, especially for improving silicon clustering and fitting.
- Allow us to start reoptimizing its design and improving silicon tracking for CDR.

Pixels and Short Strips

Massimo Caccia

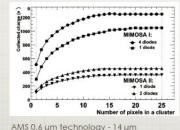
Università dell'Insubria @Como & INFN

$$\sigma_{ip} = a \oplus rac{b}{p \cdot \sin^{3/2} heta}$$

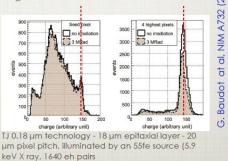
Accelerator b $[\mu m \cdot GeV/c]$ a $[\mu m]$ LEP 2570 SLC 8 33 LHC 12 70 RHIC-II 13 19 ILC < 5< 10

c. possibility to design pixels with unusual aspect ratio --- SHORT STRIPS

Z. Liang et al., NIM A (2016) http://dx.doi.org/10.1016/j. nima.2016.05.007


Technology

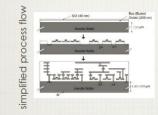
High Resistivity epitaxial layer, 4 wells (e.g. Tower Jazz 180 nm)

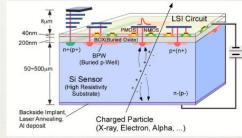

Some of the advantages of this technology:

- •6 metal layers for dense interconnections
- •quadruple well
- 18 μm thick epitaxial layer of 1-5 kΩ cm resistivity --+ collection by drift

3 good reasons for having high resistivity substrates: a. smaller charge spread & clustering size

AMS 0.6 µm technology - 14 µm epitaxial layer - 20 µm pixel pitch


480


(2013)

Technology

SOI on High resistivity Substrate (LAPIS, formerly OKI bu TJ seems to be on the track!)

- H. Lan et al. IEEE sensors journals 15 (2015) 2732 a Review!
- J. Marczewski, M. Caccia et al., IEEE Trans. Nucl. Sci., 51 (2004)1025
- M. Jastrzab, M. Caccia et al, NIM A560 (2006) 31

main advantages:

- a genuine monolithic approach
- more flexible wrt CMOS maps (nmos & pmos naturally integrated in the SOI layer)
- electronics "isolated" from the bulk (fast switching, reduced single event upset) [the motivation for the industrial development of SOI - partially true here]
- the active layer is a very standard and comfortable high resistivity, fully depleted detector
 main disadvantages:
 - not easy to get SOI wafers on a high resistivity substrate
 - mind the effect of the depletion voltage (back-gate effect)
 - custom process

Physics requests and detector constraints Cutting edge technology and ongoing R&D **Radiation Tolerance** pT Track and L1-Trigger INFN - local expertise in Detector development Ongoing China/Italy partnership in particle detectors and industrial liaison **CMS Tracking System and INFN** cial 0.25um IBM C BAM TTCrx

Next Si-tracking systems

Livio Fanò Università degli Studi di Perugia e INFN

CMS Tracking System and INFN

~ Jan 1990) R&D projects
Apr 1992	CMS Letter of Intent
Dec 1994	Technical Proposal
Apr 1998	Tracker Technical Design Report
Oct 1999	Front End Readout ASIC in 0.25µm CMOS
Dec 1999	Decision to construct all Silicon Tracker
Feb 2000	Tracker Technical Design Report Addendum

Apr 2006	Module production completed
Nov 2006	Tracker integration complete
Dec 2007	Tracker inserted in CMS
Mar 2008	Tracker connections completed
Nov 2009	Tracker ON with LHC beam

INFN has a large and diversified experience in detector construction: sensors, electronics, mechanics and operations. Its participation to the HL-LHC is in both pixel and outer-tracker CMS detectors, an optimal starting point to future colliders

Any collaboration for future preparation to CEPC-SppC will benefit from present institutional collaborations (i.e. IHEP/INFN-Perugia is a very fruitful experience) and from the high quality potential of the ongoing industrial partnership

-from CMS tracker Phase2 to future detectors

CEPC Physics & Detector - H. Yang @ SJTU

CEPC TPC Tracker: Design Goals

Performance/Design Goals

Momentum resolution ^{a} at B=3.5T	$\delta(1/p_t) \simeq 10^{-4}/\text{GeV/c TPC only}$
Solid angle coverage	Up to $\cos\theta \simeq 0.98$ (10 pad rows)
TPC material budget	$\simeq 0.05 X_0$ including the outer field cage in r
	$< 0.25 X_0$ for readout endcaps in z
Number of pads/timebuckets	$\simeq 1-2 \times 10^6/1000$ per endcap
Pad pitch/no.padrows	$\simeq 1\mathrm{mm} \times 410\mathrm{mm}/\simeq 200$
$\sigma_{\rm point}$ in $r\phi$	$<100\mu{\rm m}$ (avg for straight-radial tracks)
$\sigma_{\rm point}$ in rz	$\simeq 0.4 - 1.4 \text{ mm} (\text{for zero} - \text{full drift})$
2-hit resolution in $r\phi$	$\simeq 2 \text{ mm}$ (for straight-radial tracks)
2-hit resolution in rz	$\simeq 6 \text{ mm} (\text{for straight-radial tracks})$
dE/dx resolution	$\simeq 5 \%$
Performance	> 97% efficiency for TPC only (p _t > 1GeV/c)
	> 99% all tracking (p _t $> 1 GeV/c$)
Background robustness	Full efficiency with 1% occupancy,
Background safety factor	Chamber prepared for 10–20% occupancy
	(at the linear collider start-up, for example)

Same as Main performance/ Design goals of ILD-TPC

 $^a {\rm The}$ momentum resolution for the combined central tracker is $\delta(1/p_t) \simeq 2 \times 10^{-5}/{\rm GeV/c}$

CEPC-TPC R&D

Huirong Qi et.al.

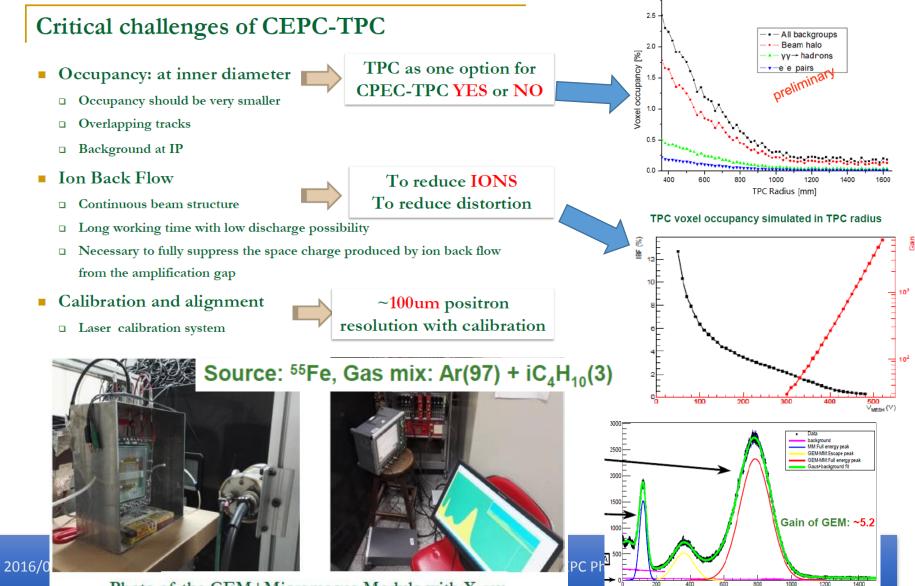
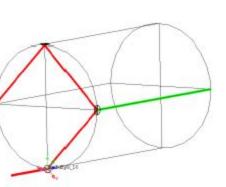
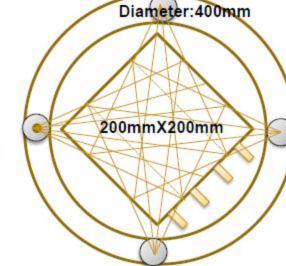


Photo of the GEM+Micromegas Module with X-ray

TPC Performance Comparison

Huirong Qi @ IHEP


	GEM+MMG 420LPI (IHEP)	2GEMs + MMG 450 LPI (Yale University)	Micromegas only 450 LPI (Yale University)
lon Back Flow	~0.1% Edrift = 0.25 kV/cm	(0.3 –0.4)% Edrift = 0.4 kV/cm	(0.4 –1.5)% Edrift= (0.1-0.4) kV/cm
<ga></ga>	4000~5000	2000	2000
ϵ -parameter(=IBF*GA)	4~5	6~8	8~30
E –resolution	~16%	<12%	<= 8%
Gas Mixture (2-3 components)	Ar + iC4H10	Ne+CO2+N2, Ne+CO2,Ne+CF4, Ne+CO2+CH4	X + iC4H10 (Ar+CF4+iC4H10)
Sparking (²⁴¹ Am)	<10 ⁻⁸	< 3.*10 ⁻⁷ (Ne+CO2) (N.Smirnov report)	~ 10 ⁻⁷ (S. Procureur report)
Possible main problem	Thin frame	More FEE channel	#
Goals	CEPC TPC	ALICE upgrade	#
			- 16 -

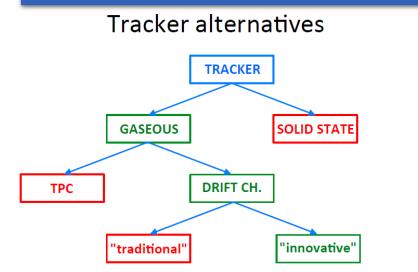

Laser calibration for TPC prototype

Goals of laser for TPC detector

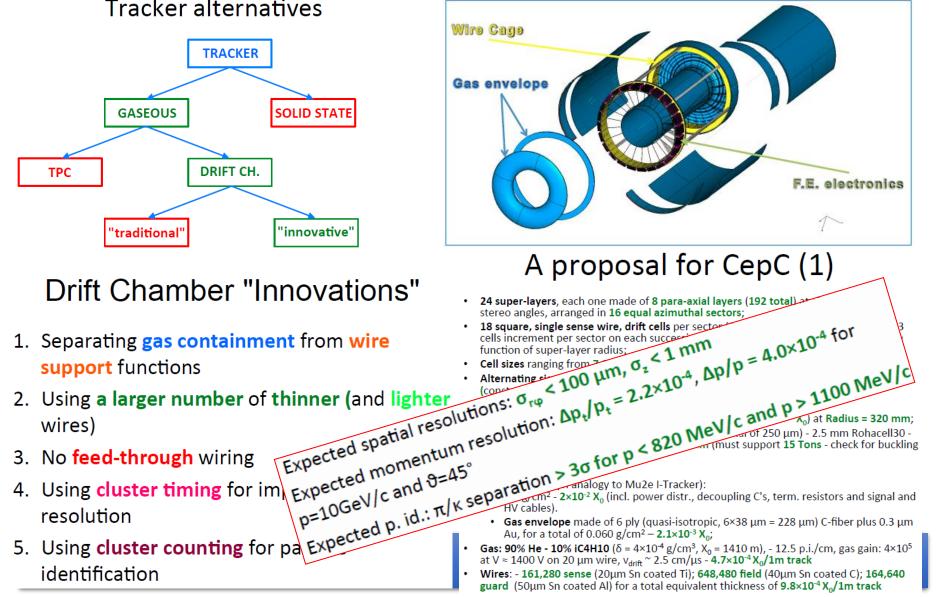
- The ionization in the gas volume along the laser path occurs via two photon absorption by organic impurities
- Drift velocity, gain uniformity
- To reduce the distortion effect
 - E×B effect study
 - Drift Velocity measurement
 - Good resolution in space and tin
 - No production of σ-rays
 - No multiple scattering
- Baseline design (DONE)
 - Nd:YAG laser device
 - $\lambda = 266 \text{ nm or } E = hv = 4.66 \text{ eV}$
 - Energy: ~100 uJ/pulse
 - Duration of pulse: 5 ns
 - Active area:200mm × 200mm
 - Drift length: 500mm
 - Outer diameter:~400mm
 - GEM readout

Supported by 国家基金委重点基金

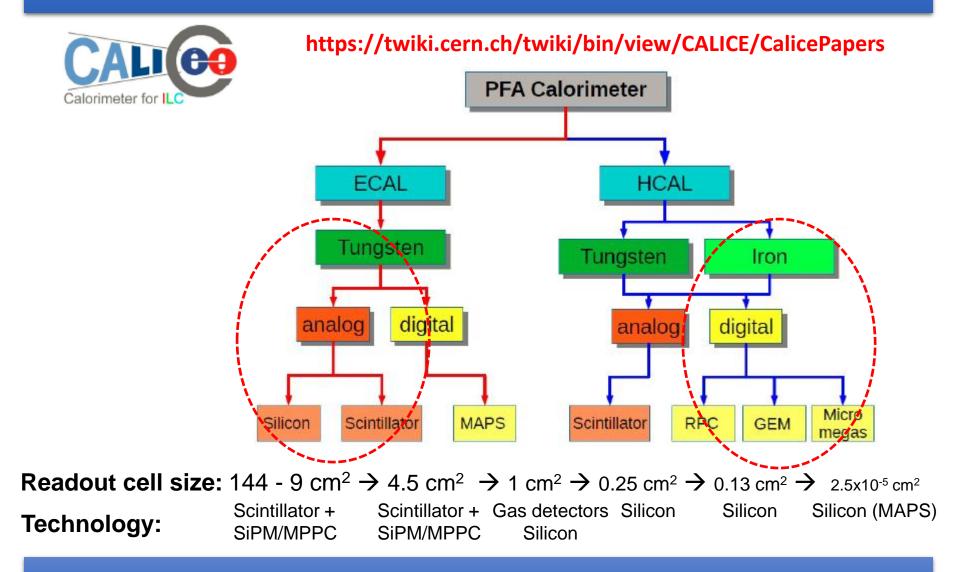
Laser calibration baseline design



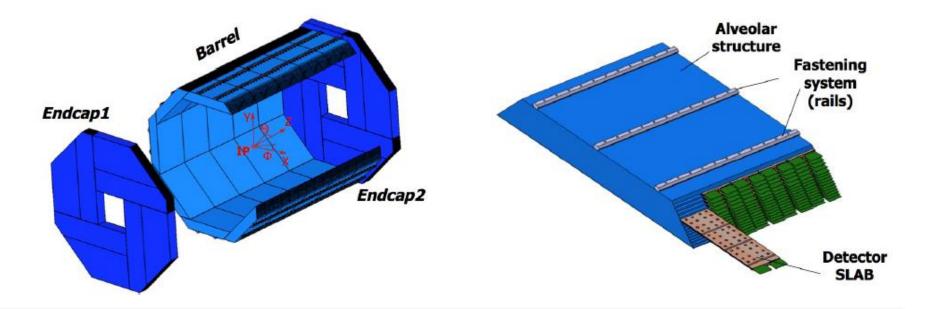
The assembled module test with 266nm laser


Tsinghua and IHEP Cooperation

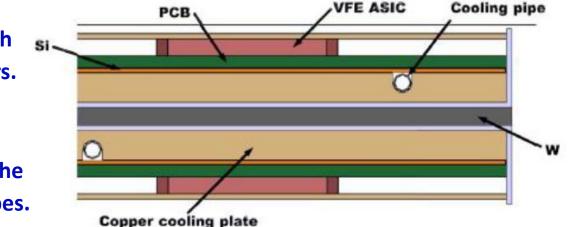
Drift Chamber with PID capability F. Grancagnolo


INFN – Lecce, ITALY

Drift Chamber "Innovations"


Global R&D of Imaging Calorimeters

CEPC ECAL: Silicon-W

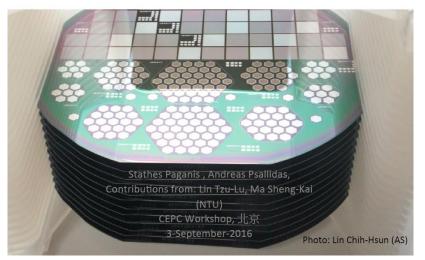

V. Boudry @ IN2P3

- $\circ~$ The ECAL consists of a cylindrical barrel system and two large end caps.
 - One Barrel: 5 octagonal wheels
 - Two Endcaps: 4 quarters each
- \circ Two detector active sensors interleaved with tungsten absorber
 - $\,\circ\,\,$ silicon pixel 5 x 5 mm² with 725 μm in thickness
 - PCB with VFE ASIC

Active Cooling System

- CEPC is designed to operate at continuous mode with beam crossing rate: 2.8×10⁵ Hz. Power pulsing will not work at CEPC.
- Compare to ILD, the power consumption of VFE readout electronics at CEPC is about two orders of magnitude higher, hence it requires an active cooling
 - Evaporative CO₂ cooling in thin pipes embedded in Copper exchange plate.
 - For CMS-HGCAL design: heat extraction of 33 mW/cm², allows operation with $6 \times 6 \text{ mm}^2$ pixels with a safety margin of 2

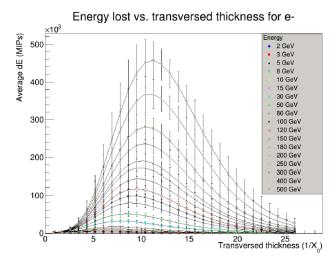
➔ Transverse view of the slab with one absorber and two active layers.

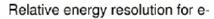

→ The silicon sensors are glued to PCB with VFE chips, cooled by the copper plates with CO₂ cooling pipes.

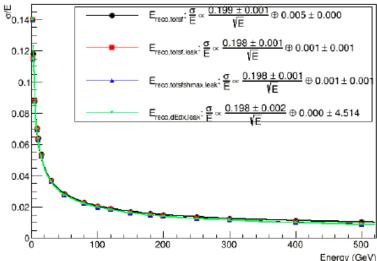
2016/09/03

High Granularity ECAL Calibration Stathes Paganis @ NTU

26

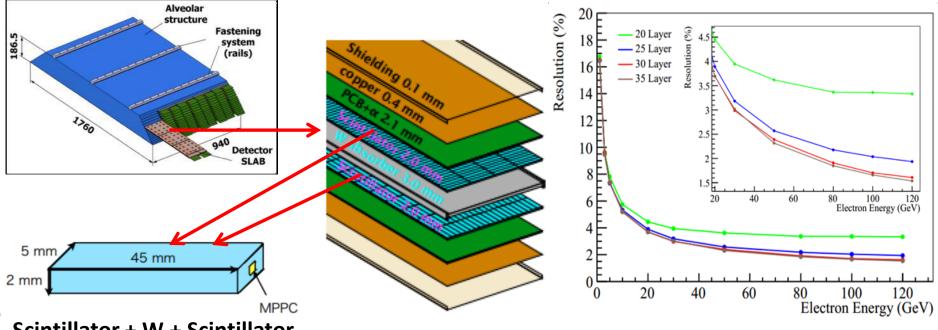

High Granularity ECAL Calibration




- Understand some basic questions:
 - Origin of a ~1% constant term observed in an example of such ^t calorimeter with increasing passive material thickness.
 - How to correct for upstream material losses (presampling).
 - How to correct for leaking EM energy.

Various methods give similar resolution and good linearity.

Longitudinal Energy deposition


2016/09/03

CEPC ECAL: Scintillator-W

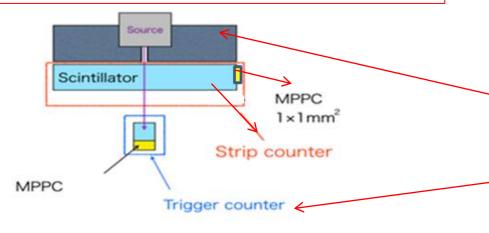
A super-layer (7mm) is made of:

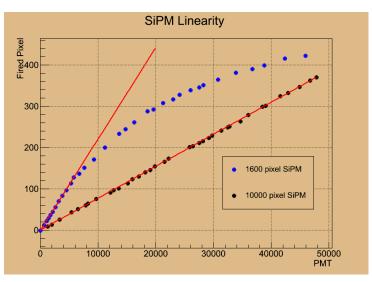
Y.L. Zhang, Z.G. Wang et.al.

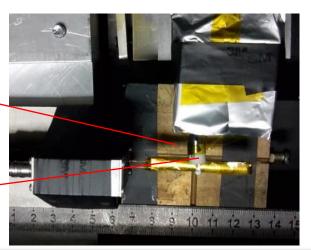
Plastic scintillator (2mm) + Tungsten plate as absorber (3mm thick)
 A readout/service layer (2mm thick)

Scintillator + W + Scintillator

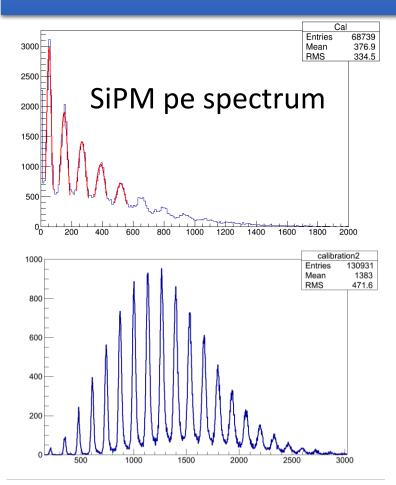
The energy resolution of 25GeV electron is about 3.3% (cf. CALICE TB results)

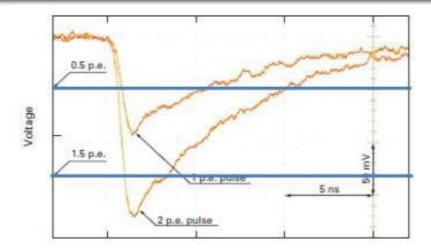

To achieve required energy resolution, the number of layers should be ~ 25.

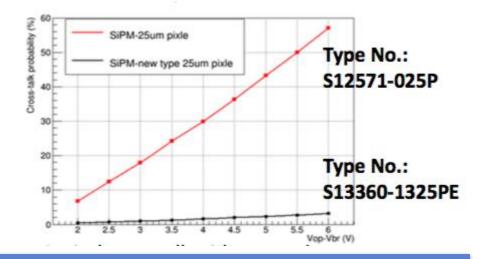

Tests of SiPM at IHEP


The SiPM dynamic range is determined by the number of pixels.

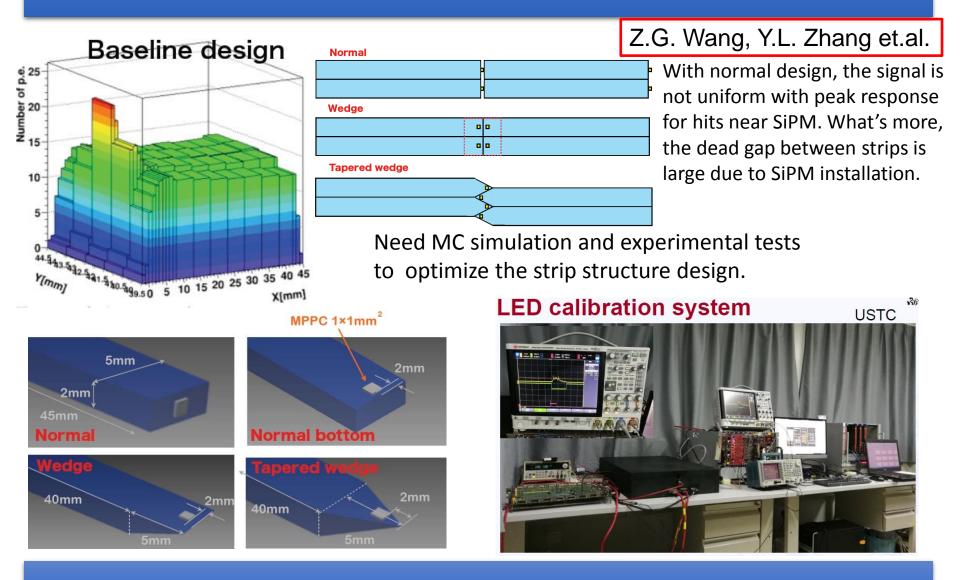
The manufactures have developed the SiPM with 10um pixel which extends the SiPM dynamic range. **But, the photon detection efficiency of 10um SiPM is only 1/3 of 25um SiPM.**


Scintillator strip irradiated with β collimated (1mm) from Sr-90




Tests of SiPM (IHEP, USTC)

pulse height spectrum. Excellent photon counting



Cross talk rate = Events (> 1.5p.e)/Events (>0.5p.e)

2016/09/03

Sci-Strip Optimization and LED Calib.

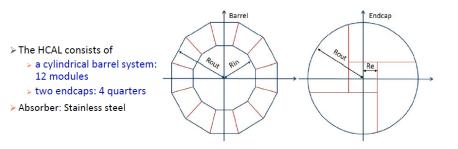
2016/09/03

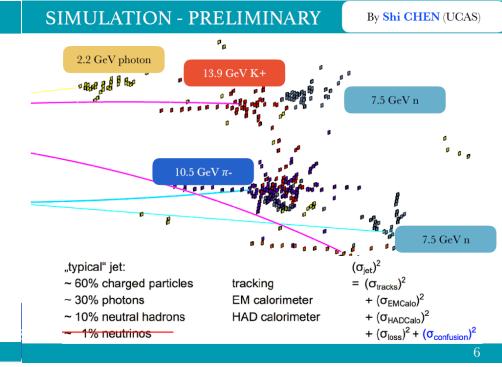
CEPC HCAL R&D

The HCAL consists of

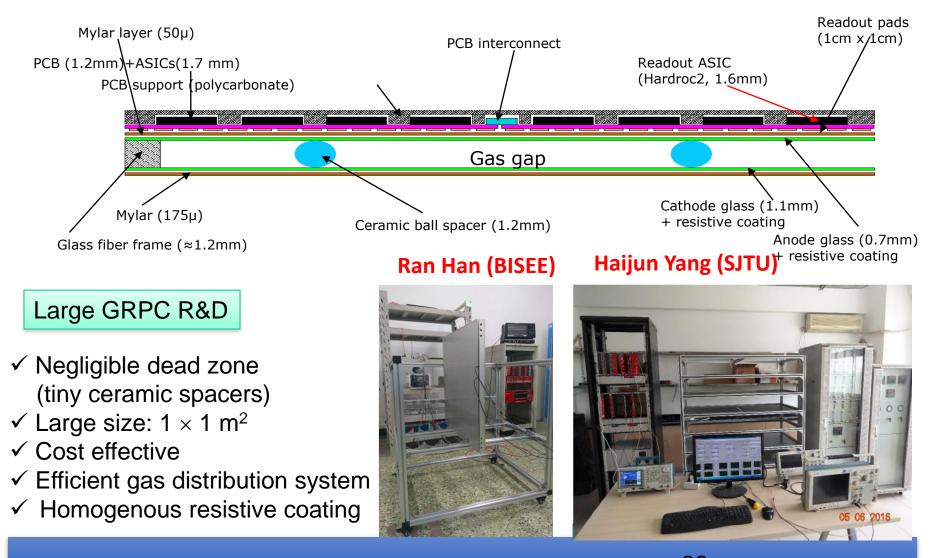
- a cylindrical barrel system:
 12 modules
- > two endcaps: 4 quarters
- > Absorber: Stainless steel

Active sensor


- Glass RPC
- Thick GEM or GEM

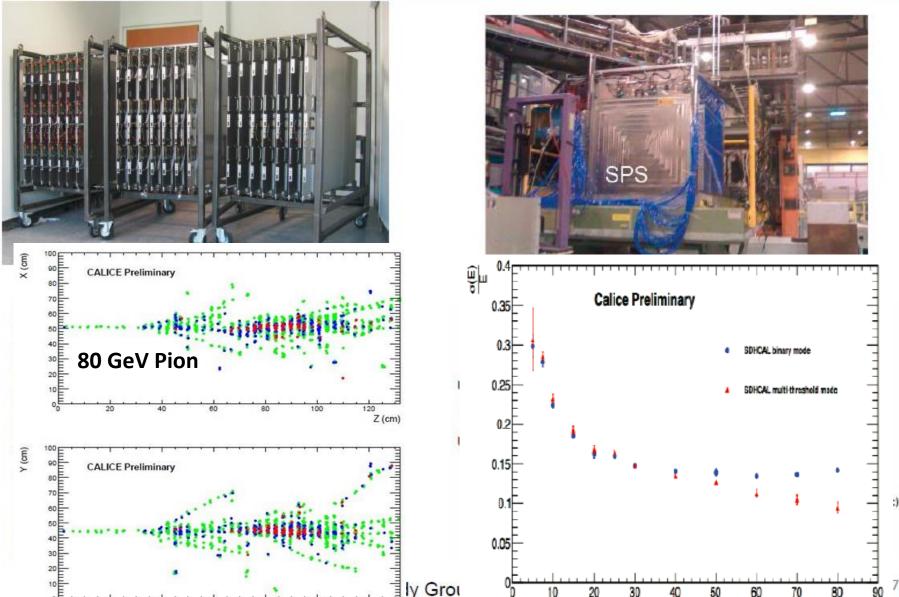

Readout (1×1 cm²)

- Digital (1 threshold)
- Semi-digital (3 thresholds)


CEPC DHCAL OPTIMIZATION

- ➤ To full fill the requirements of CEPC PFA, the DHCal is optimized by the following:
 - ► layers of DHCal, scanned from 20 layers to 48 layers.
 - ▶ size of each cell, scanned from 10 mm to 80 mm.
 - > digitization (Q spectrum, spatial resolution, semi-Digi, etc..)

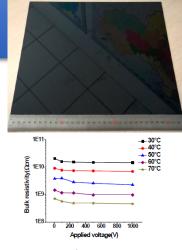
RPC Construction & Performance Study



2016/09/03

Prototype integration and test

Yi Wang (THU) Imad Laktineh (IPNL)


High-Rate GRPC

High-Rate GRPC may be needed in the very forward region

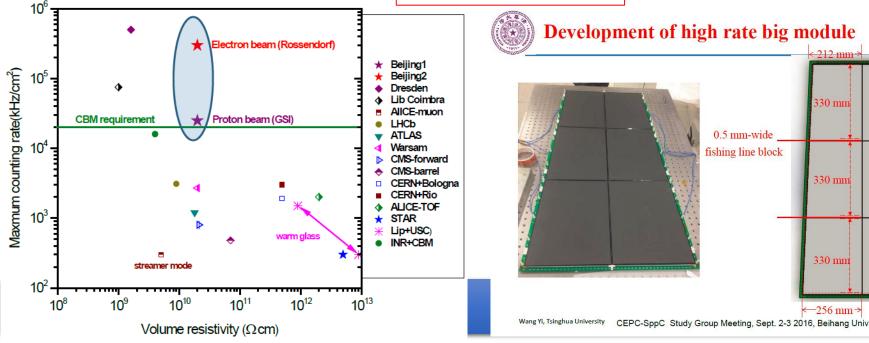
 \checkmark Low resistive glass (10¹⁰ Ω .cm) developed by Tsinghua was used to build few chambers. \checkmark 4 chambers were tested at

DESY as well as standard GRPC(float glass)

Dimension	33 x27.6cm ²
Bulk resistivity	~10¹⁰Ωcm
Standard thickness	0.7, 1.1mm
Thickness uniformity	20µm
Surface roughness	<10nm
Dielectric constant	7.5 - 9.5
DC measurement	Ohmic behavior
	stable up to 1C/cm ²

212 mm

330 mm


330 mm

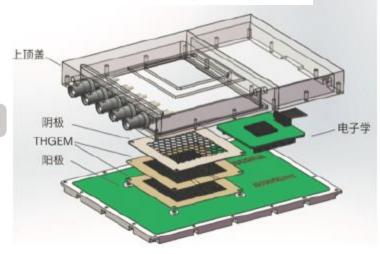
330 mm

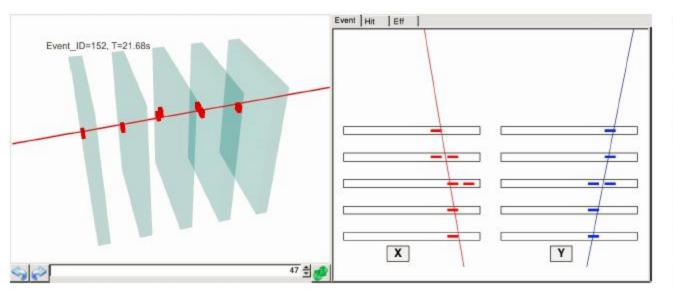
-256 mm→

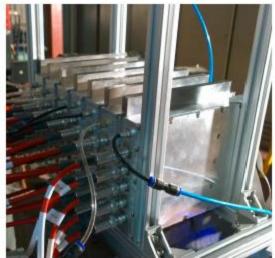
Wang Yi, Tsinghua University CEPC-SppC Study Group Meeting, Sept. 2-3 2016, Beihang Univ 24

Yi Wang (THU) Imad Laktineh (IPNL)

26

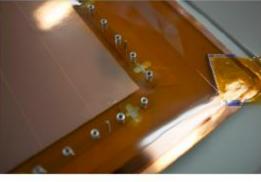

WELL-THGEM BEAM TEST


- 7 THGEMs ware installed, and 5 of them were used, and flushed with Ar/iso-butane = 97:3.
- ► 1 threshold, binary readout
- > 900 MeV proton beam was us
- ► 5cm x 5cm sensitive region
- ➤ ASIC: Gastone (From INFN)


- ► Double layer of THGEM
- ► Gas: Ar/isobutane (97:3) 20cm x 20cm x 5 mm

From Qian LIU/Hongbang LIU (UCAS / GXU)

From Boxiang YU (IHEP)

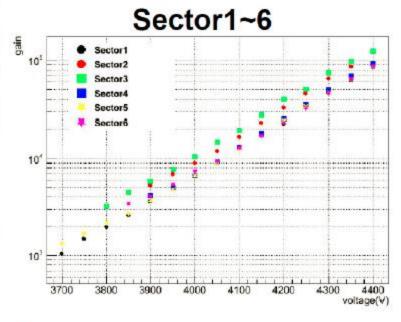

GEM R&D

From Jianbei LIU (USTC)

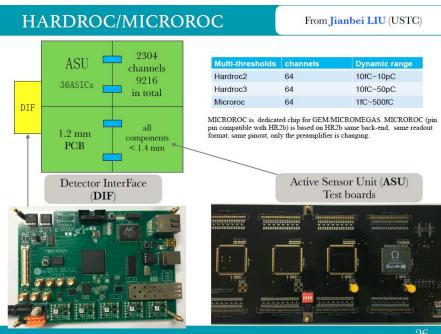
APV25 GEM readout

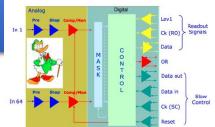
INFN APV25 chip

GEM assembly using a novel self-stretching technique



 Large-area GEM (0.5x1m²) is one of main detector R&D focuses at USTC recently.

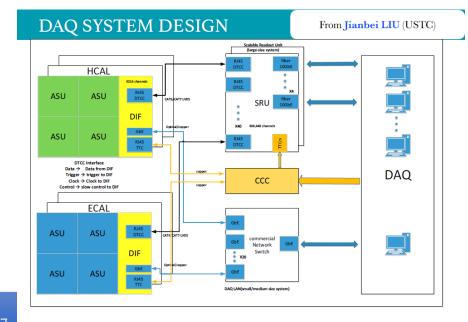

→ Resolution uniformity ~11%
 → Gain uniformity ~16%
 → Can reach gain of 10⁴ at 4000V


CONCLUSION

DAQ SYSTEM: GASTONE

From Qian LIU/Hongbang LIU (UCAS / GXU)

- ► Detector simulation:
 - ► Granularity of calorimeters optimization
 - ► Number of layers of calorimeters optimization
 - ► Digitization (RPC/GEM/THGEM)
- ► Detector R&D
 - ► RPC (Glass RPC, Polyamide RPC)
 - ► GEM (double GEM structure, self-stretching)
 - ► THGEM (Well-THGEM, double THGEM structure)


GASTONE (Gem Amplifier Shaper Tracking ON Events)

N channels	64
Chip dimensions	$4.5 \times 4.5 \text{ mm}^2$
Input impedance	120 Ω
Charge sensitivity	$16 \text{ mV/fC} (C_{det} = 100 \text{ pF})$
Peaking time	90 ns (C_{det} = 100 pF)
Crosstalk	< 3%
ENC	800 e ⁻ +40 e ⁻ /pF
Power consumption	~6 mW/ch
Readout	Serial LVDS (100 Mbps)

25

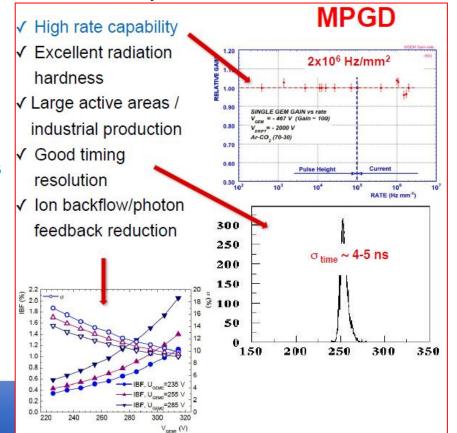
Muon System with MPGD

Paolo Giacomelli (INFN, Bologna)

Detectors for CEPC and SppC

- Detectors for CEPC could be built right now. They can be thought as developments of the LEP detectors, like the ILD and SID detectors for ILC
- Detectors for SppC are much more challenging and will require extensive R&D before being realised.
- R&D for HL-LHC is a good starting point, but technologies will have to be pushed even further for SppC (and FCC-hh)
- In both cases muon detectors will be extremely large and will cover ~10000 $\,m^2$ in the barrel and 3-5000 $\,m^2$ in the forward region
- Micro Pattern Gas Detectors (MPGD) could be used now to build a muon system for CEPC, and, with a significant R&D, should be able to cope with the harsher conditions of SppC.

- ➤Many technologies
 - ≻GEMs
 - ≻THGEMs
 - ➤ MicroMegas


38

≻µRwell

Muon systems for CEPC-SppC will be very large:

Considering a large solenoid (similar order of magnitudes in other cases as well)

- ✓ o(10000) m² in the barrel
- \checkmark ~ 3000 m^2 in the endcap
- \checkmark ~ 300 m² in the very forward

Consideration of RICH Det. for CEPC

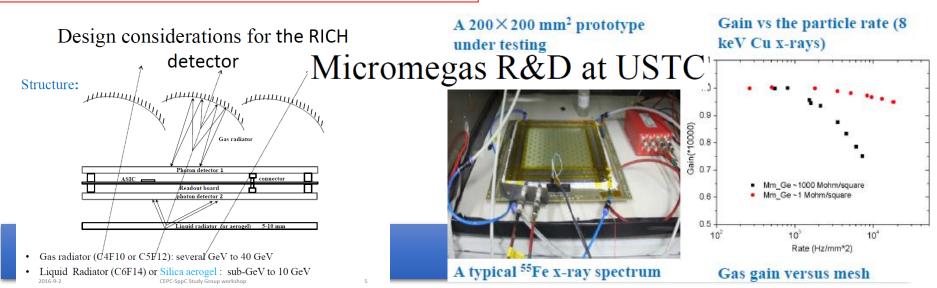
Motivation

Z pole measurement is one of the goals of CEPC ! The CEPC is expected to collect 10¹⁰⁻¹² Zs (in CEPC's pre-CDR).

Benefits from high-stat z pole data:

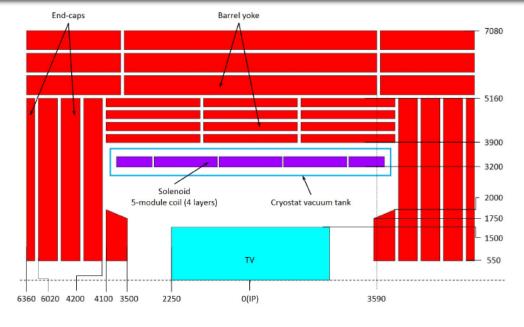
- · Precision test of SM & new physics searches
- Fragmentation functions & QCD
- Heavy flavor physics, spectroscopy & new hadrons
- τ-lepton physics
- others

e⁻e⁺->Z⁰->q⁻q⁺

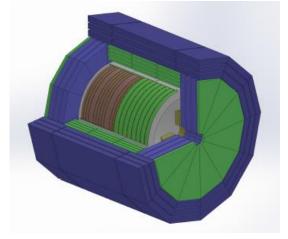

e⁻e⁺->7⁰->l⁻l⁺

Hadron identification is crucial! And a dynamic range of GeV to 40 GeV for κ,π is required.

Zhiyong Zhang, Jianbei Liu


Comparison of RICHs using C4F10 gas radiator.

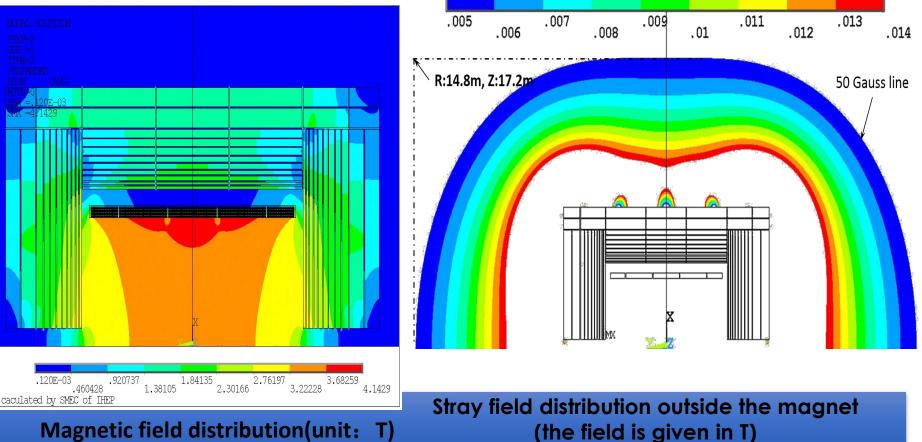
	Forward RICH of DELPHI	RICH-1 of LHCb	CEPC RICH prototype	
Goals	2.5 to 25 GeV/c	10 to 65 GeV/c	20-40GeV к,π	
Active area:	Two end caps	Two end caps	15cm *15 cm	
Granularity	Depend on the time resolution (~8ns) and (~5cm/µs) etc.	2.5*2.5 mm2	If 2.5*2.5mm2	
Angle resolution	2.8 mrad	1.6mrad	2 mrad	
Channels	26880	~200k	3600	
Sensitive detector	MWPC (fast electrons signal rise time ~ns)	Silicon detector (rise time ~ 5ns)	Hybrid (THGEM+Mmegas, rise time: ~100ns)	
Charge	3fC(or 30) (single photoelectron) to 1000fC (ionization)	5000e- = 8fC	2*10 ⁵ e- = 30fC to ~900fC (ionization)	
Event rate:	<25 KHz ?	40MHz	?	
measurements	Digital time	Charge	Digital(Analog)	
2016-9-2	CEPC-SppC Stud	y Group workshop	9	


CEPC Magnet Design

Based on CEPC detector, a **3.5T** central field of superconducting solenoid (similar to CMS design) is required in a warm aperture diameter of 6m and length of 8.05m.

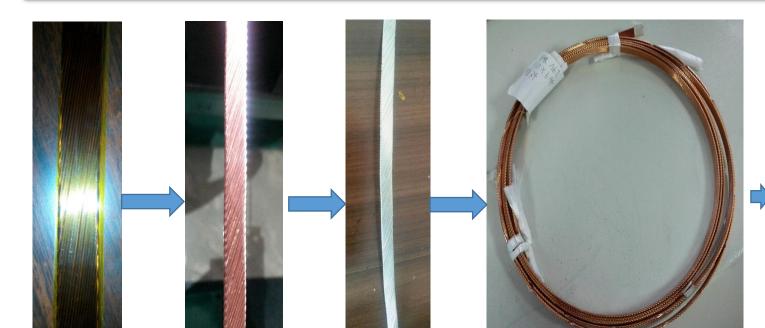
Schematic view of the CEPC detector magnet cross section (Half of the magnet section)

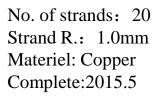
Cryostat inner radius(mm)	3400	Barrel yoke outer radius(mm) 72	40	
Cryostat outer radius(mm)	4250	Yoke overall length(mm) 139	966	
Cryostat length(mm)	8050	Barrel weight(t) 57	75	
Cold mass weight(t)	165	End cap weight(t) 64	25	
Barrel yoke inner radius(mm)	4400	Total yoke weight(t) 122	200	
The solenoid central field(T)	3.5	Nominal current(KA) 1	8.575	
Maximum field on conductor(T)	3.85	Total ampere-turns of solenoid(MAt) 2	23.925	
Coil inner radius(mm)	3600	Inductance(H)	10.4	
Coil outer radius(mm)	3900	Stored energy(GJ)	1.8	
Coil length(mm)	7600	Stored energy per unit of cold mass(KJ/kg) 10.91		



2016/09/03

Progress of field design


Feipeng Ning


Magnetic field distribution: central filed 3.5T, the Peakpeak field percent deviation of TV is 10.1% The 50 G line is at 14.8 m radial distance and 17.2 m axial distance with a total thickness of iron of 2.44 m both in the barrel and the two end-caps with the 3.5 T central field.

Progress of the Rutherford cable

Ling Zhao

No of strands : 17 Strand R: 0.727mm Materiel :Nb/Ti Complete:2015.7

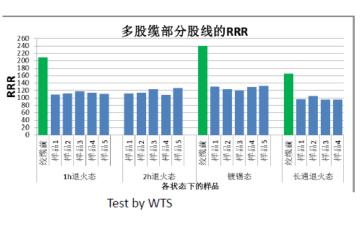
Cable research has made great progress!

17No of strands : 24Number of strands : 187mmStrand R : 0.727mmStrand diameter : 1.2mmMateriel :Nb/TiMateriel :Nb/Ti.7Complete:2015.8Complete time:2016.2

Number of strands : 32 Strand diameter : 1.2mm Materiel :COPPER+A1 Length: 1m Complete time:2016.8 Shear strength (copper &A1) : 8.85MPa

Development of testing device

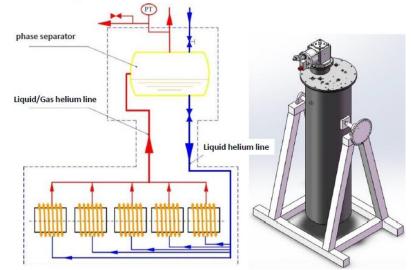
Ic test by induction method


Testing device is based on a small refrigerator.

RRR value test

Testing device based on small refrigerator for Ic and RRR value have put into use.

Meifen Wang


Cable test results

1. RRR value declined by about 1/3 after the stranding process

2.Less affected by larger twist pitch of strands.

Progress of cooling system

- The coils are cooled by conductive method.
- A thermal siphon principle experiment platform was built based on liquid nitrogen. The next plan is based on liquid helium.

Summary and Future Plans

In the past 2-3 years, tremendous efforts have been made to prepare the CEPC preliminary Conceptual Design Report for Physics and Detector.

Future plans include

- With MOST funding support (RMB 36M) and NSFC support, we are speeding up R&D of critical detector technologies and optimization.
- MDI: work with accelerator group to optimize design
- Feasibility studies of detector prototypes.
- International collaboration are needed
- $_{\circ}\,$ Aiming for CEPC CDR and TDR in next 5 years.

Many thanks to all members of

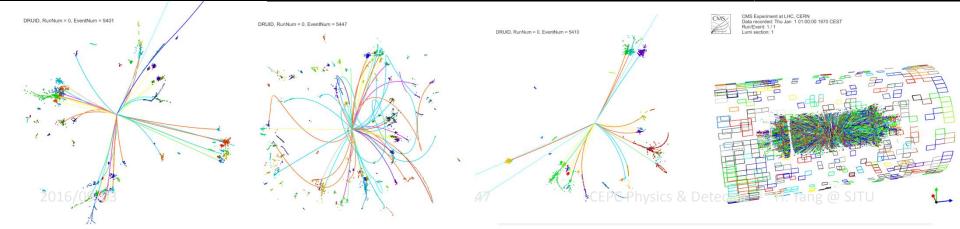
CEPC Physics and Detector working group

Physics and Detector Group Co-conveners

Yuanning Gao (THU), Shan Jin (IHEP), Nu Xu (CCNU)

Sub-groups and co-conveners

- Physics simulation and analysis: Gang Li, Manqi Ruan, Yaquan Fang (IHEP)
- MDI: Hongbo Zhu (IHEP), Yiwei Wang (IHEP)
- Vertex: Qun Ouyang (IHEP), Meng Wang (SDU)
- TPC tracker: Yulan Li (THU), Huirong Qi (IHEP)


ECAL and HCAL : Tao Hu (IHEP), Jianbei Liu (USTC), Haijun Yang (SJTU)

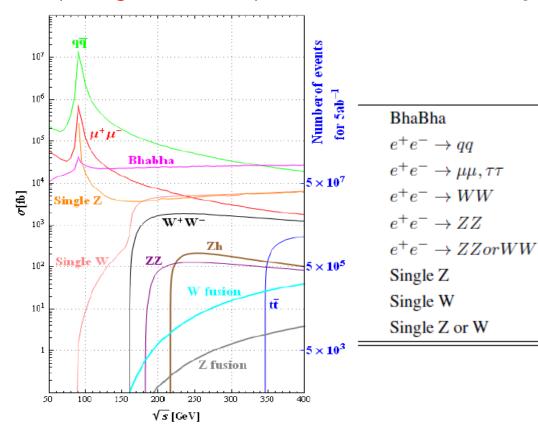
- Muon: Boxiang Yu (IHEP), Liang Li (SJTU)
- Magnet: Ling Zhao (IHEP)

Backup Slides

Simulation & Reconstruction Software

- **Geant 4 Full Detector Simulation:**
 - Geometry can be edited freely (Y. Xu, NKU & X. Chen, SJTU)
 - A set of geometries has been generated
- Reconstruction Chain
 - Tracking: Clupatra & ILD tracking (B. Li, etc THU)
 - PFA: Arbor (M. Ruan, etc, IHEP)
 - Flavor Tagging: LFCIPlus (G. Li, etc, IHER) unNum = 0, EventNum = 23

MC Samples & Computing Resources


Using WHIZARD to generate Higgs signal and SM background samples (Gang Li, Xin Mo)

- Computing: ~780 CPU cores
- Storage: 2 3 PB storage
- Distributed computing needed

T. Yan @ IHEP

Resources Status

#	Site Name	CPU Cores	OS	Status	Shared by VO
1	CLOUD.IHEP-OPENSTACK.cn	144	SL 6.5	Active	bes,cepc,juno
2	CLOUD.IHEP-OPENNEBULA.cn	120	SL 6.5	Active	bes,cepc,juno
3	CLUSTER.WHU.cn	100	SL 6.4	Active	cepc,bes,juno
4	CLUSTER.SJTU.cn	100	SL 6.5	Active	cepc,bes
5	CLUSTER.GXU.cn	50	CentOS 5.10	Active	серс
6	CLUSTER.BUAA.cn	50	SL 5.8	Testing	bes,cepc
7	CLUSTER.PKU.cn	64	SL 5.10	Testing	bes,cepc
8	CLUSTER.SDU-MLL.cn	150	SL 6.6	Testing	bes,cepc
9	CLUSTER.SDU-HXT.cn	100		Preparing	bes,cepc
10	CLOUD.WHU.cn	120	SL 6.6	Preparing	cepc,bes,juno
11	CLOUD.IHEP-PUBLIC.cn	10+	SL 6.6	Preparing	cepc,bes,juno
	Total (Active + Testing)	778			

2016/09/03

Team Building & Trainings

Training

Go t

August 2014

11 Aug - 15 Aug Detector Simulation and Geometry editing

October 2013

In oct - 20 oct CEPC Training: Physics Analysis, Detector Optimization and Software tools


International Summer school on TeV Experimental Physics (iSTEP)

20-29 August 2014 IHEP Asia/Shanghal timezone Continuous efforts + dedicated training

We have a group of faculty + students...

Overview

PFA and Imaging Calorimeter

Requirements for detector system

- \rightarrow Need excellent tracker and high B field
- \rightarrow Large R_I of calorimeter
- → Calorimeter inside coil
- \rightarrow Calorimeter as dense as possible (short X₀, λ_I)
- → Calorimeter with extremely fine segmentation

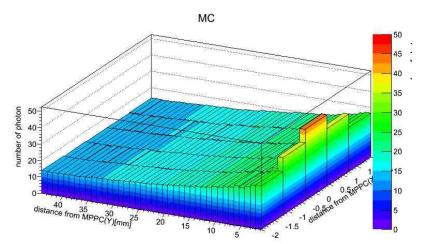
2016/09/03

thin active medium

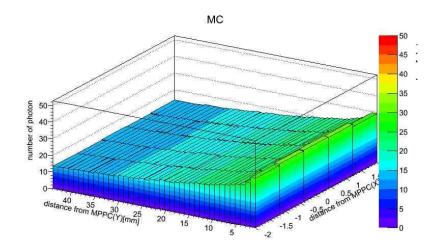
CEPC MDI: Luminosity Measurement

- Luminosity measurement with the dedicated device, LumiCal, with a target uncertainty of 10⁻³, as required by precision measurements of the Higgs and Z physics.
 - Electromagnetic calorimeter with silicon-tungsten sandwich structure, to measure radiative Bhabha events
 - □ $\Delta L/L \sim 2\Delta \theta/\theta_{min}$ → necessary to achieve precise polar angle measurement better than $\Delta \theta < 0.015$ mrad

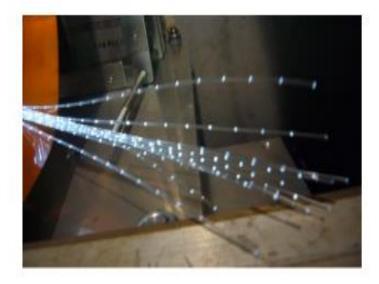
Online beam luminosity monitor allowing fast beam tuning
 radiation hard sensor technologies (e.g. CVD diamond), to measure radiative Bhabha events at zero photon scattering angle

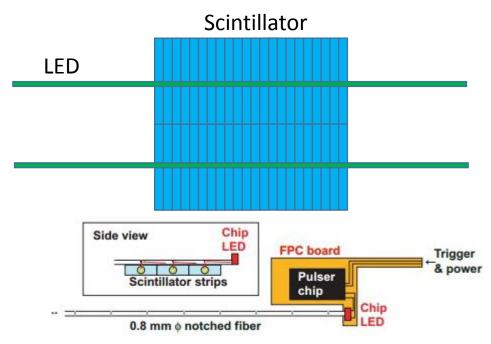

 similar design as for the SuperKEKB design

Scintillator Strip Shape Optimization


SiPM sensor area $1 \times 1 \text{ mm}^2 \rightarrow 0.25 \times 4 \text{ mm}^2$:

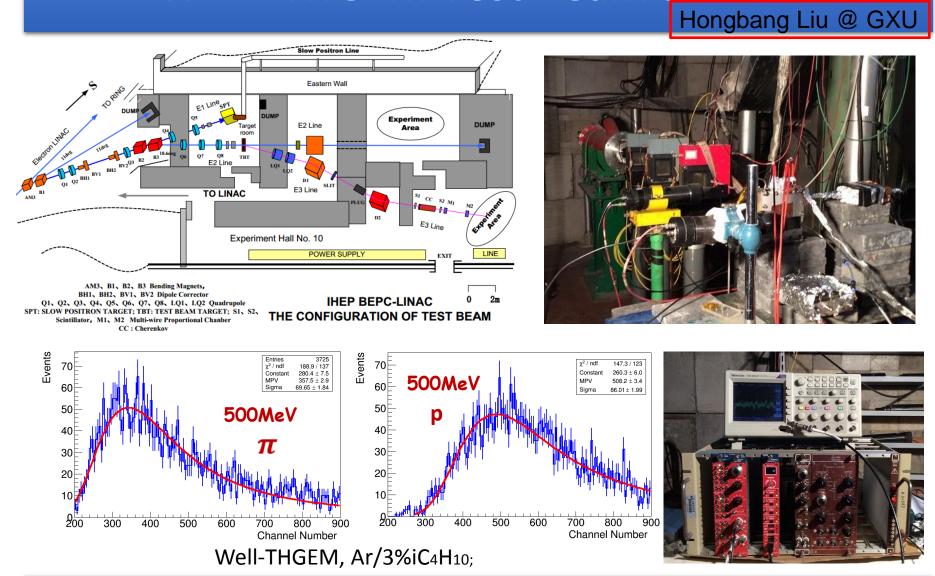
- → to increase photon acceptance
- → It is easy to make this shape of MPPC with current technology





Calibration for Scintillator and SiPM

The ScW ECAL consists of ~8 million channels of scintillator strip units. The stability of the light output has to be monitored. A light distribution system is under study to monitor possible gain drifts of the SiPMs by monitoring photoelectron peaks.

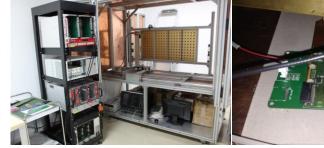


LED – Fiber calibration system:

- A pulse generator, a chip LED connect to notched fibers
- Notched Fiber distribute lights to ~ 80 scintillator strips

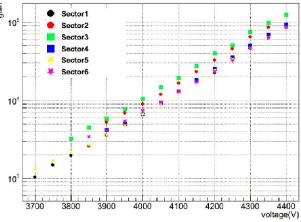
WELL-THGEM Test Beam at IHEP

2016/09/03


Large-area GEM @ USTC

Jianbei Liu (USTC)

GEM assembly using a novel self-stretching technique


APV25 GEM readout

INFN APV25 chip

Sector1~6

- → Resolution uniformity ~11%
- → Gain uniformity ~16%
- → Can reach gain of 10⁴ at 4000V

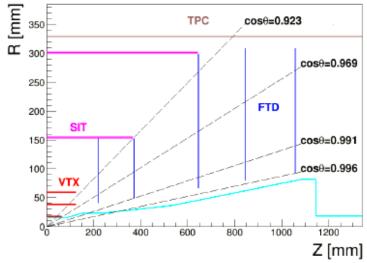
- Large-area GEM (0.5x1m²) is one of main detector R&D focuses at USTC recently.
- Technology has been developed and matured to produce high-quality GEM detectors as large as ~1m² that are also applicable to CEPC DHCAL.

CEPC Vertex and Silicon Tracker Ouyang Qun @ IHEP

B = 3.5T

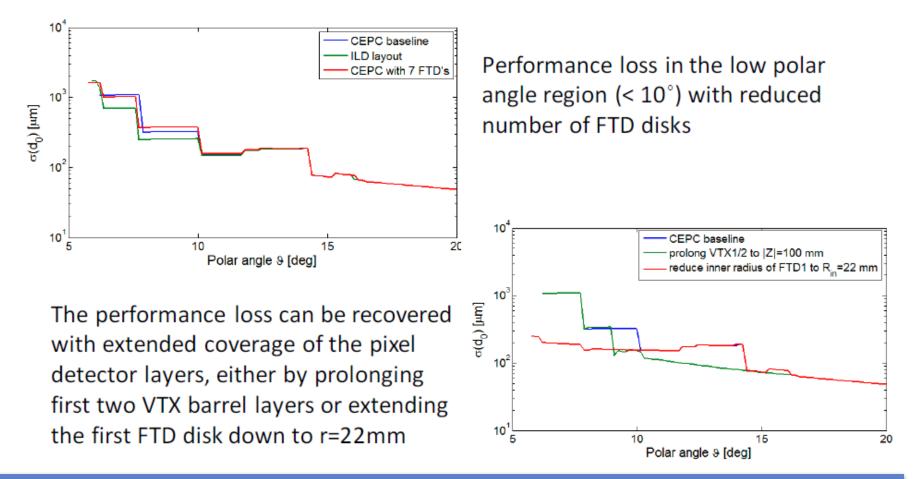
- momentum resolution
- impact parameter resolution

Vertex detector specifications:


- spatial resolution near the IP: $\leq 3 \ \mu m$
- material budget: ≤ 0.15%X ₀/layer
- pixel occupancy: ≤ 1 %
- Total ionising dose: ≤ 100 krad/ year Non-ionising fluences : ≤3x10¹¹n_{ea}/(cm² yr)
- first layer located at a radius: ~1.6 cm

Silicon tracker specifications:

- σ_{sP} : $\leq 7 \, \mu m \rightarrow small pitch (50 \, \mu m)$
- material budget: ≤ 0.65%X ₀/layer


Performance requirements

$$\sigma_{1/p_T} = 2 \times 10^{-5} \oplus 1 \times 10^{-3} / (p_T \sin \theta)$$
$$\sigma_{r\phi} = 5 \mu m \oplus \frac{10}{p (GeV) \sin^{3/2} \theta} \mu m$$

Forward region with L* = 1.5m

 Impact parameter resolution studied with LDT - fast simulation using Kalman filter

CEPC Vertex and Silicon Tracker

Many technologies from ILC/CLIC R&D could be referred.

BUT, unlike the ILD, the CEPC detector will operate in continuous mode.

Pixel sensor: power consumption < 50mW/cm^2 with air cooling, readout < $20 \mu \text{s}$

- HR-CMOS sensor with a novel readout structure —ALPIDE for ALICE ITS Upgrade
 - In-pixel discriminator and digital memory based on a current comparator
 - In-column address encoder
 - <50mW/cm² expected
 - Capable of readout every ~4µs

SOI sensor with similar readout structure

- **□** Fully depleted HR substrate, potential of 15µm pixel size design
- Full CMOS circuit

DEPFET: possible application for inner most vertex layer

small material budget, low power consumption in sensitive area

Silicon microstrip sensor: p⁺-on-n technology

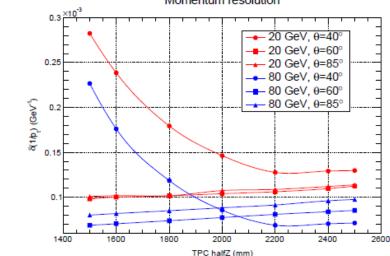
pixelated strip sensors based on CMOS technologies

CEPC Vertex and Si Tracker: Critical R&D plan

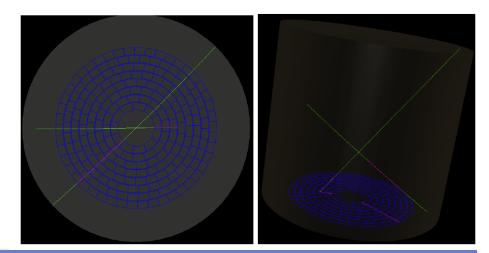
Pixel sensors with low power consumption and high readout speed

In-pixel discriminator

Similar to ALPIDE sensor for ALICE ITS Upgrade

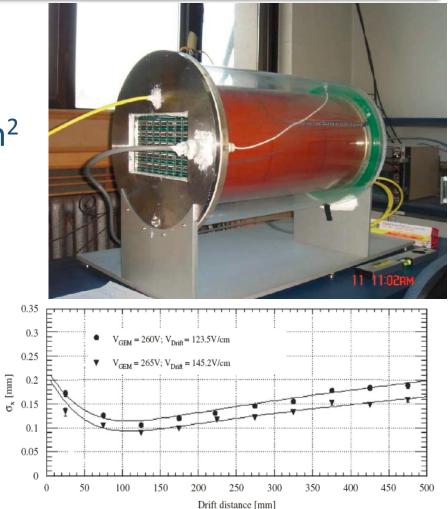

- In-matrix sparsification
 - Starting design with HR-CMOS process
 - Exploring possibility with SOI process, especially for smaller pixel size
- Light weight mechanical design and cooling
 - D 0.05%(0.1%) material budget without(with) cabling
 - **a** Air cooling technology with acceptable vibration due to air flow
- Pixel sensor thinning to 50µm
- Slim edge silicon microstrip sensor
- Low noise, low power consumption FEE for silicon microstrip

CEPC TPC Conceptual Design Huirong Qi @ IHEP


Parameter of Simulation

- TPC, Half Z=2.0m
- r_in = 329 mm; r_out = 1808 mm
- Cos(theta) = ~ 0.95
- pad size: 1mm×6mm
- Number of hits per track: ~200
- **B** = 3.5 Tesla, with L* = 1.5m

$$e^+e^- \to \mu^+\mu^-\nu_e\bar{\nu}_e$$



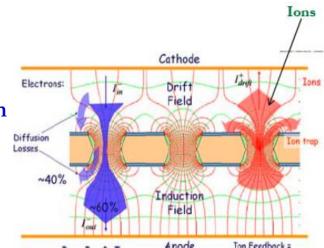
Momentum resolution

2016/09/03

Test of a TPC Prototype at THU

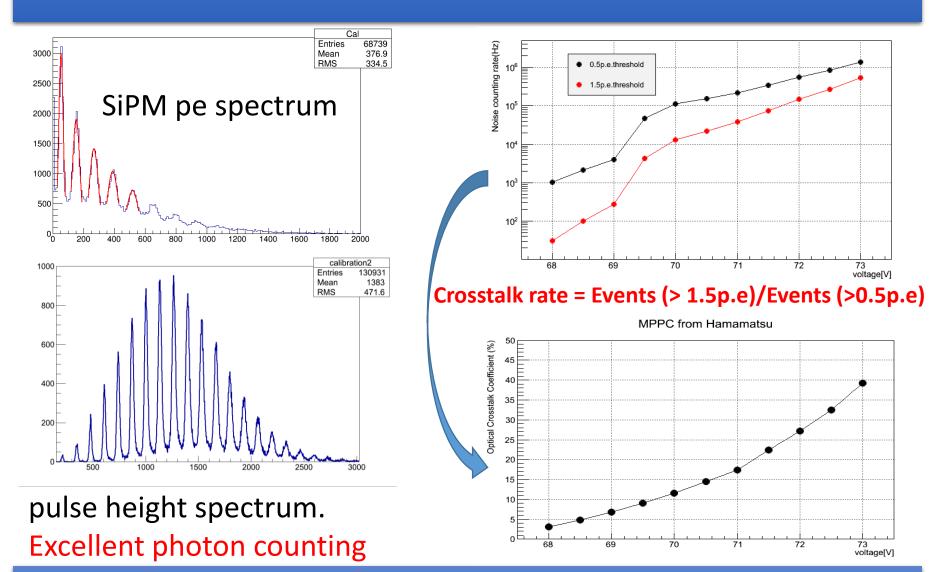
- TPC cylinder length: 50 cm
- TPC Diameter = 32 cm
- Readout GEM: 100x100mm²
- 10x32 pads, staggered
 Pad size: 9.5x1.5mm²
 Pitch: 10 x 1.6 mm²
- Spatial resolution as a function of drift distance (B=1T)
- Best performance: $\sigma_x = 100 \mu m @Z \sim 100 \mu m$

Fig. 6. *x*-Resolution for Ar–Iso–CF4 = 96.3–3.1–0.6 gas with B = 1 T under two different test conditions ($\varphi < 2^\circ, \theta < 10^\circ$).

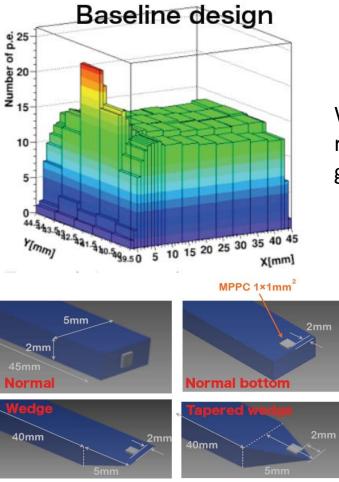

CEPC TPC: Critical R&D plan

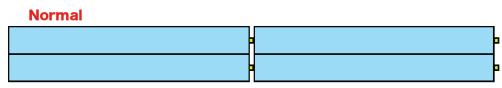
Physical design and optimization of the TPC

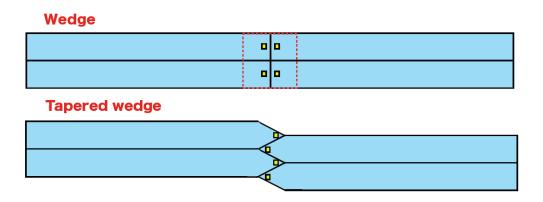
- Length, inner/outer radius, pad size
- **E**/**B** fields and uniformity requirements
- Working gas, counting rate, ion backflow suppression
- **•** The time structure of the beam
- Sensors: GEM and Micromegas detectors ?


Critical R&D

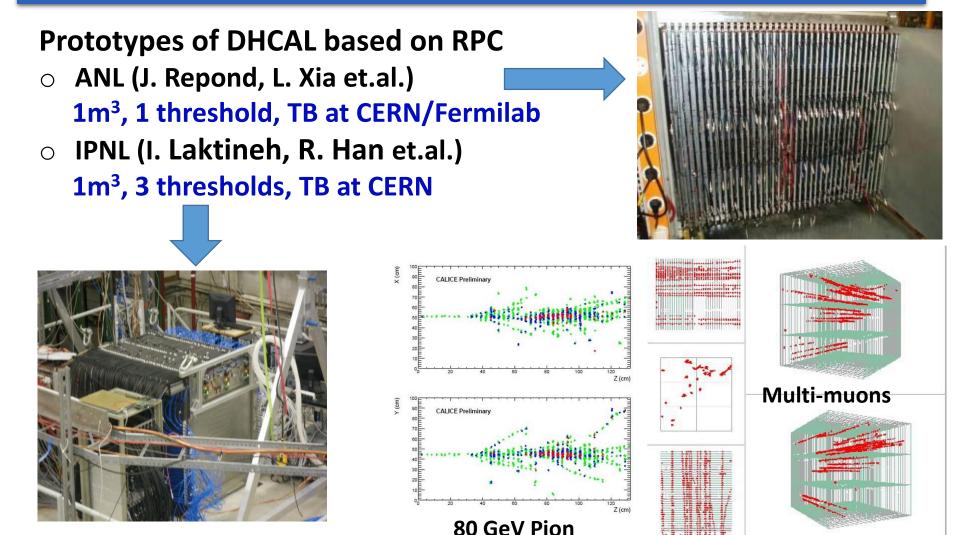
- Large prototype design, construction and assembly
- Laser calibration and alignment device design, assembly
- Detector readout options (GEM+Pad, Micromegas+Resistive Pad, ThickGEM+Pad ?)
- Front-end readout electronics and DAQ
- Cooling system (eg. two-phase CO₂ cooling, micro-channel CO₂)


IBF of GEM


Tests of SiPM and Strip Optimization


2016/09/03

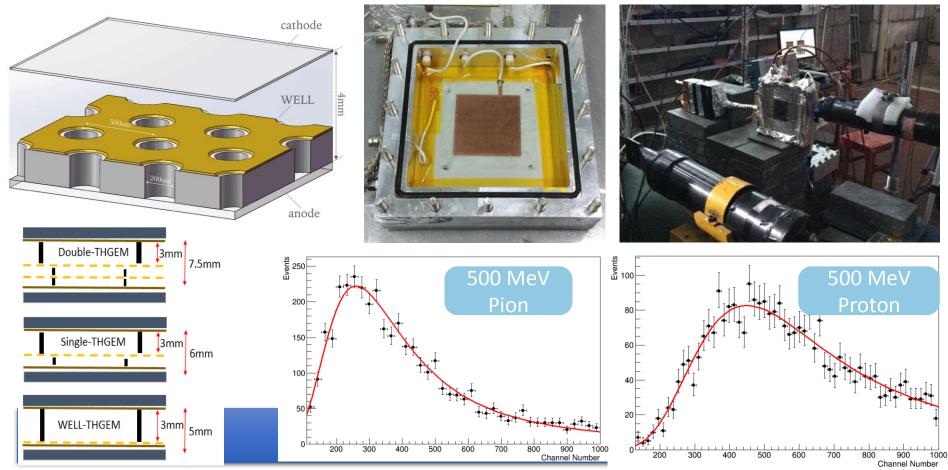
Scintillator Strip Structure Optimization



With normal design, the signal is not uniform with peak response for hits near SiPM. What's more, the dead gap between strips is large due to SiPM installation.

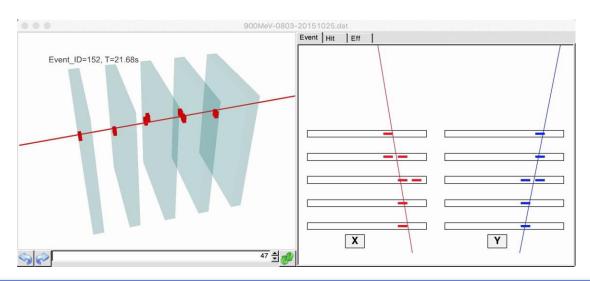
Need MC simulation and experimental tests to optimize the strip structure design.

Prototypes of DHCAL with RPC

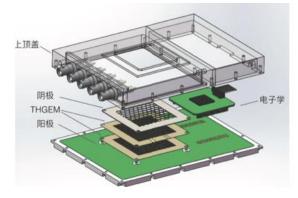

WELL-THGEM Beam Test at IHEP

Detection efficiency of well-THGEM was measured with BEPC pion / proton beams.

Efficiency:


a Ar/iso (97/3) ,Gain ~ 2000; Eff (proton) > 93%; Eff(Pion) > 82%

• Ne/CH4 (95/5) ,Gain ~ 9000; Eff (proton) > 99%; Eff(Pion) > 94%



WELL-THGEM Beam Test in Oct., 2015

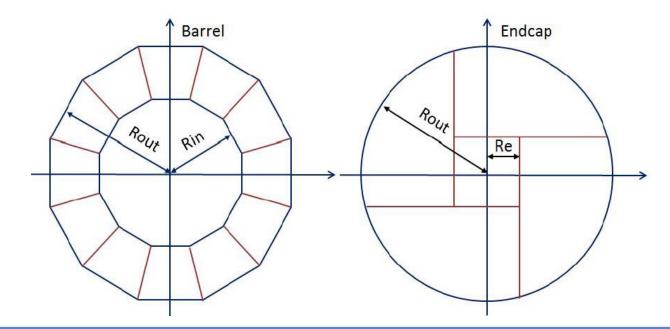
- 7 THGEMs are installed, and 5 of them are used, and flushed with Ar/iso-butane = 97:3.
- 1 threshold, binary readout
- 900 MeV proton beam was used
- 5cm x 5cm sensitive region

Hongbang Liu, Qian Liu (UCAS)

2016/09/03

Hadron Calorimeter

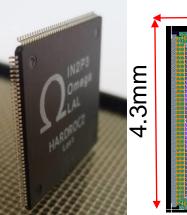
The HCAL consists of

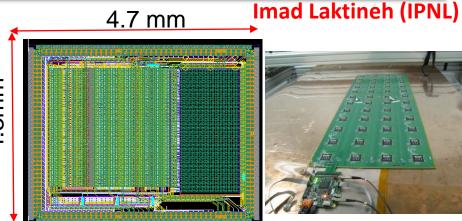

- > a cylindrical barrel system:12 modules
- > two endcaps: 4 quarters
- > Absorber: Stainless steel

Active sensor

- Glass RPC
- > Thick GEM or GEM

Readout (1×1 cm²)

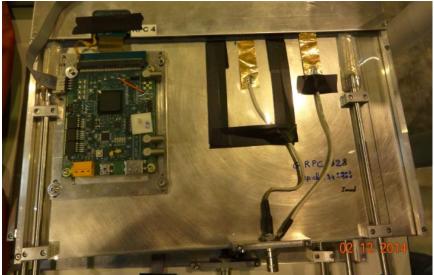

- Digital (1 threshold)
- Semi-digital (3 thresholds)



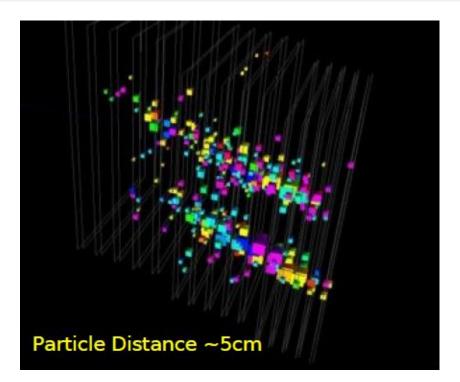
Electronics Readout System R&D

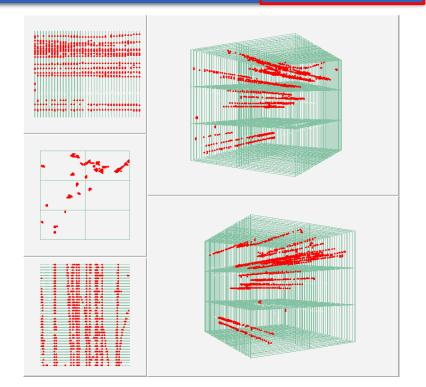
ASICs : HARDROC2

64 channels Trigger less mode Memory depth : 127 events **3 thresholds** Range: 10 fC-15 pC Gain correction → uniformity



Printed Circuit Boards (PCB) were designed to reduce the cross-talk with 8-layer structure and buried vias.

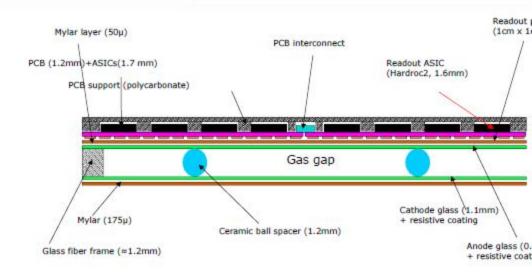

Tiny connectors were used to connect the PCB two by two so the 24X2 ASICs are daisy-chained. $1 \times 1m^2$ has 6 PCBs and 9216 pads.


DAQ board (DIF) was developed to transmit fast commands and data to/from ASICs.

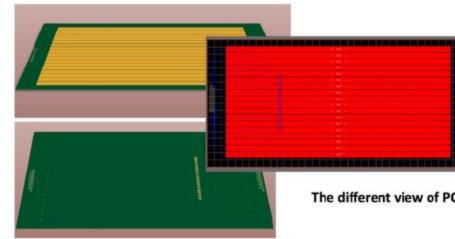
Imaging Calorimeters

L. Xia @ ANL

Two electrons ~5cm apart CALICE SiW ECAL

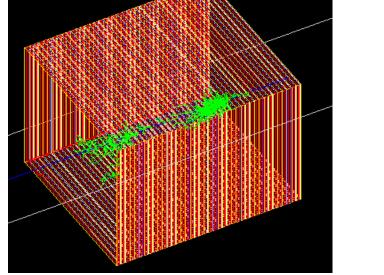

~20 muons in 1m² area CALICE RPC DHCAL

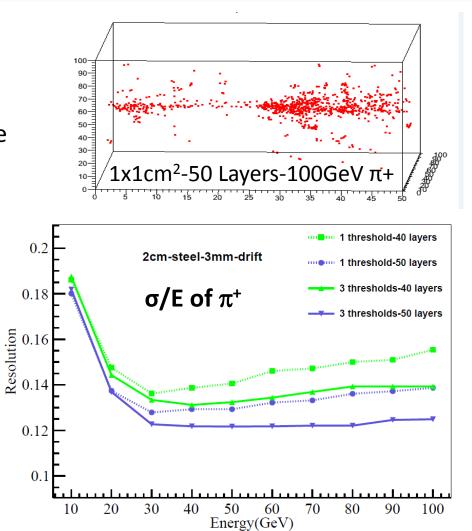
This is exactly what PFA needs: distinguishing individual showers within jet environment, in order to get excellent jet energy/mass resolution


RPC R&D

From Haijun Yang (SJTU)

- ►Large Glass RPC R&D
 - ►Negligible dead zone
 - ►Large size: 1x1 m^2
 - ►Cost effective
 - ►Efficient gas distribution system
 - ► Homogenous resistive coating





2016/09/03

Simulation of DHCAL

- Absorber: 2cm stainless steel
- Drift gap: 3mm
- > No. of layers: 40, 50
- Ecell = 1, 5 and 10MIP if the charge is above the thresholds typically placed at 0.1, 1.5 and 2.5 MIPs

Boxiang Yu @ IHEP

Imaging calorimeter: Critical R&D

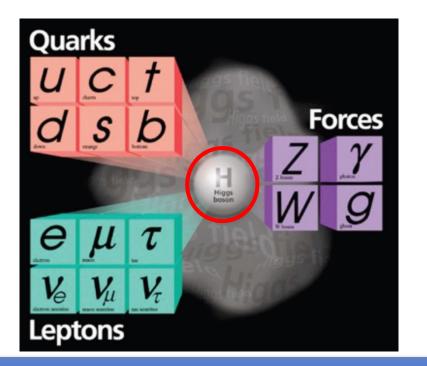
Detector optimization

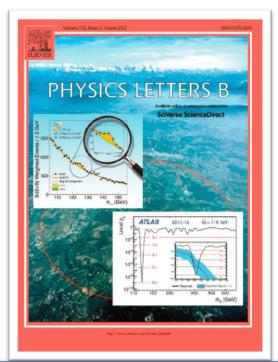
- Optimize of the pad size of calorimeter
- Optimize the number of layers of calorimeters, help to reduce the size of magnets and cost
- Gas recirculation system, HV distribution system

Readout Electronics (PCB, low power ASIC FEE)

Cooling

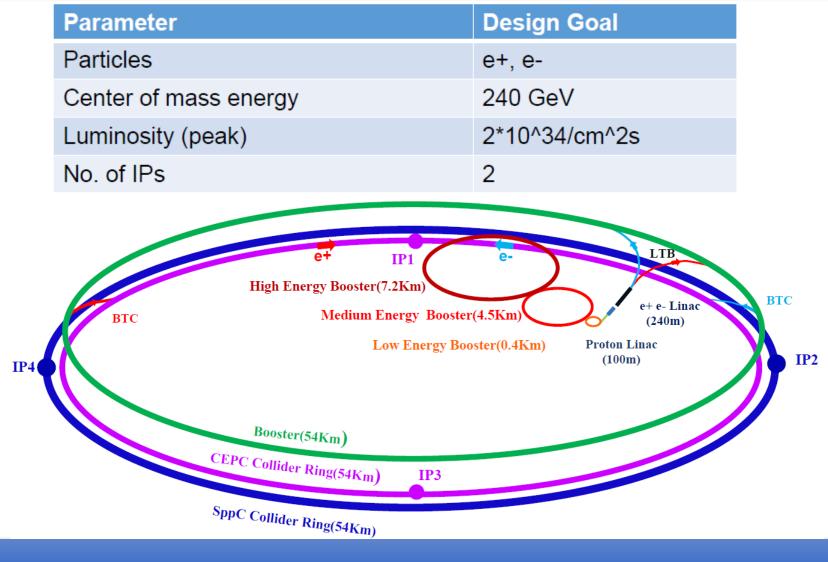
Power pulsing will NOT work at the CEPC, effective cooling and power saving strategy need to be developed and tested

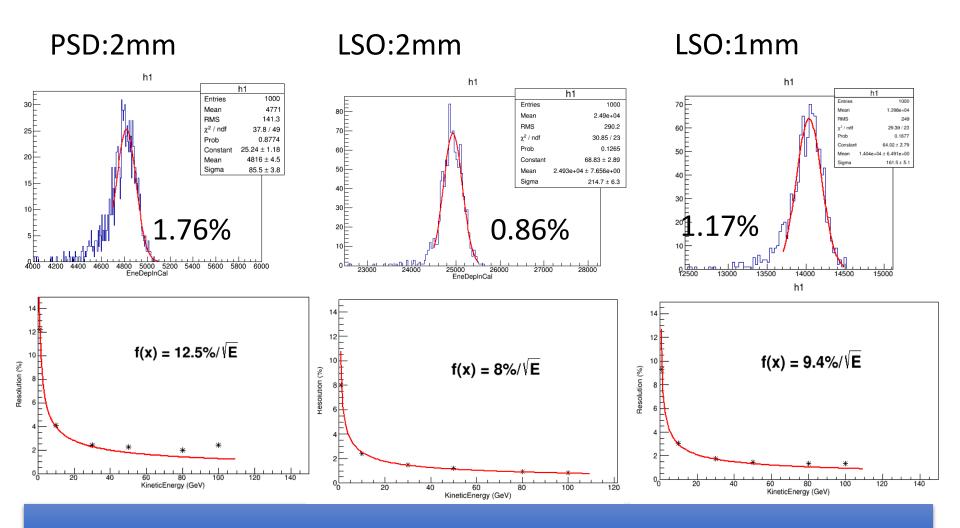

Calibration


- Energy, position and density calibration etc.
- Detailed shower measurement gives possibility to use track segments (from data itself) to calibrate calorimeter

Mechanical: self-support and compact module

Circular Electron Positron Collider - CEPC


Discovery of low mass Higgs boson at the LHC (July 4, 2012) brings up an opportunity to investigate circular e⁺e⁻ collider as a viable option for the "Higgs Factory" which is dedicated for precision measurement of the Higgs properties with clean collision environment.



2016/09/03

Circular Electron Positron Collider - CEPC

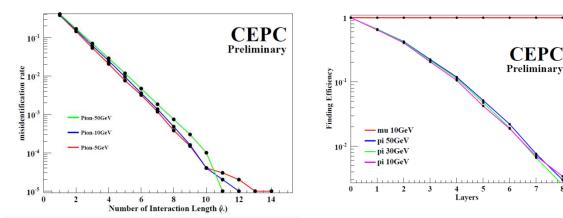
The performance of ECAL

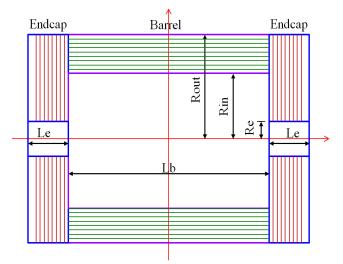
76

CEPC Muon System

Yuguang Xie @ IHEP

Functions of muon system

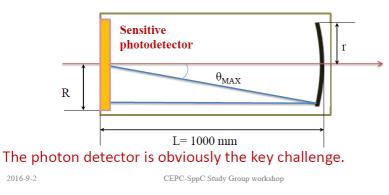

- To separate muons from hadrons
- A tail catcher of HCAL
- Solenoid return roke & support structure


Performance requirements

- **I** nLayer >=8, iron thickness >= 6λ
- Eff >=95%, resolution<=2cm</p>
- Misidentification rate (pi->mu)@40GeV <1%</p>

Item Option Baseline ~4.6 Lb 3.6~5.6m Rin 2.5~3.5m ~ 3.0 Rout 4.5~5.5m ~ 5.0 $1.6 \sim 2.4 \text{m}$ ~ 2.0 Le Re 0.6~1.0m ~ 0.8 8/10/12 10 Segmentation Number of layers $6 \sim 10$ $8(\sim 3 \text{ cm per layer})$ Total thickness of iron $6 \sim 10\lambda \ (\lambda = 16.77 \text{ cm})$ 8 (8/8/12/12/16/16/20/20/24cm, Sum=136cm) $0.92 \sim 0.96 \times 4$ 0.94 Solid angle coverage 1.5~2.5cm 2 Position resolution 1.5 : 1~2cm Average strip width Wstrip: 2~4cm 3 92%~98% 95% Detection efficiency 92%~96% 94% Reconstruction efficiency

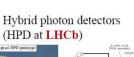
The standalone simulation results show the number of layers and the thickness of iron are reasonable.

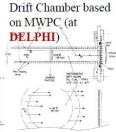


Considerations for a prototype

A prototype is needed to validate the basic performances of designe RICH;

Requirements for 40 GeV κ,π , (C4F10 radiator):


- $\theta_{\text{MAX}} = 0.053$
- $r (mirror) > L^* \theta_{MAX} = 60 \text{ mm}, R (sensitive area) = 75 \text{ mm}$
- Angle resolution: 2mrad



Some classical Photon detector


Hamamatsu Hybrid Avalanche PhotoDetector (HAPD) at Belle2-ARICH Super balkal photon -7 kV

Pixelated APD

Some new type of Photon detectors

And also, MPGD (GEM, Micromegas) based Photon detector !

2016-9-2

6

CEPC-SppC Study Group workshop