Importance of a Model Independent Measurement of $\mathrm{BR}(\mathrm{H} \rightarrow \mathrm{BSM})$

Tim Barklow (SLAC)
Sep 03, 2016
CEPC-SppC Study Group Meeting

Systematic Error on $\sigma(\mathrm{ZH})_{\text {hadronic }}$ Measurement from Model Dependence of Analysis

$$
\left.\left.\begin{array}{r}
\left(\frac{\Delta \sigma(Z H)_{\text {hadronic }}}{\sigma(Z H)_{\text {hadronic }}}\right)^{2}=\frac{S+B}{S^{2}}\left\{1+\frac{\left(L \sigma_{Z H}\right)^{2}}{S+B} \sum_{i} B R_{i}^{2}\left[\left(\frac{\Delta \sigma \cdot B R_{i}}{\sigma \cdot B R_{i}}\right)^{2}\left(\xi_{i}-<\xi>\right)^{2}+\Delta \xi_{i}^{2}\right.\right. \\
\text { Penalty for non-uniform efficiency }
\end{array}\right]\right\}
$$

$\xi_{i}=$ efficiency for events from H decay i to pass $\sigma(Z H)_{\text {hadronic }}$ analysis
$\mathrm{S}=$ Number of signal events in $\sigma(Z H)_{\text {hadronic }}$ analysis
$\mathrm{B}=$ Number of background events in $\sigma(\mathrm{ZH})_{\text {hadronic }}$ analysis

For the sys error from unknown BSM decays we must assume $B R_{B S M} \geq \Delta B R_{B S M}$.
From the range of efficiencies in Mark Thomson's ILC analysis
at $\sqrt{s}=350 \mathrm{GeV}$ we get $\Delta \xi_{B S M}=.035$.
$\Delta B R_{B S M}=0.04$ gives a sys error of 11% of the stat error for the $\sqrt{s}=350 \mathrm{GeV}$ $\sigma(Z H)_{\text {hadronic }}$ measurement.

Systematic Error on $\sigma \cdot B R_{i}$ from $\Delta B R_{B S M}$

Neglecting non-Higgs background, the number of events $\boldsymbol{N}_{\boldsymbol{i}}$ passing Higgs decay channel \boldsymbol{i} selection criteria is
$N_{i}=\sum_{j} \sigma \cdot B R_{j} \varepsilon_{i j} L$
$\boldsymbol{\varepsilon}_{i j}=$ efficiency for Higgs decay mode \boldsymbol{j} to pass Higgs decay channel \boldsymbol{i} selection For SM decays the efficiencies $\varepsilon_{i j}$ can be calculated with MC. But what if decay mode \boldsymbol{j} is a BSM decay? To account for this possibility a conservative systematic error can be assigned assuming $\varepsilon_{i j}=1$. This leads to a systematic error of $\Delta \boldsymbol{N}_{i}=\boldsymbol{L} \sigma \Delta B R_{B S M}$

Improvement in Higgs Coupling Errors if $\Delta B R_{B S M}$ is small.

Further improvement in the Higgs coupling measurements can be obtained using the constraint $\sum_{i} B R_{i}=1$ as first noted by Michael Peskin.
This constraint is model independent so long as the error in $B R(H \rightarrow B S M)$ is included in the fit. What error in $B R(H \rightarrow B S M)$ is required to produce an improvement in Higgs coupling measurements ?

In the following the ILC H-20 scenario is a 20 year run plan with operation at $250+350+500 \mathrm{GeV}$ with $2000+200+4000 \mathrm{fb}^{-1}$

Perform coupling fit with $\sum_{i} \boldsymbol{B R}_{i}=1$ including $\triangle \boldsymbol{B} \boldsymbol{R}(\boldsymbol{H} \rightarrow \boldsymbol{B S M})$
(the constraint $\sum_{i} \boldsymbol{B} \boldsymbol{R}_{\boldsymbol{i}}=1$ is model independent if $\triangle \boldsymbol{B R}(\boldsymbol{H} \rightarrow \boldsymbol{B S M})$ is included in the fit)
ILC Higgs Coupling Precision assuming 20 year H20 scenario

$\frac{\Delta \boldsymbol{B R}(\boldsymbol{H} \rightarrow \boldsymbol{B S M})}{\Delta \boldsymbol{B R}(\boldsymbol{H} \rightarrow \text { Invis })_{0}}$	∞	8	4	2	1	0.1
$\boldsymbol{Z Z}$	0.31%	0.29%	0.26%	0.22%	0.20%	0.19%
$\boldsymbol{W W}$	0.38%	0.36%	0.31%	0.25%	0.21%	0.19%
$\boldsymbol{b} \boldsymbol{b}$	0.60%	0.57%	0.52%	0.46%	0.42%	0.40%
$\boldsymbol{\tau}^{+} \boldsymbol{\tau}^{-}$	0.88%	0.86%	0.83%	0.79%	0.77%	0.76%
$\boldsymbol{g g}$	0.92%	0.91%	0.88%	0.86%	0.85%	0.84%
$\boldsymbol{c c}$	1.1%	1.1%	1.1%	1.1%	1.1%	1.0%
$\boldsymbol{\gamma \gamma}$	3.1%	3.1%	3.1%	3.1%	3.1%	3.1%
$\Gamma_{\text {tot }}$	1.7%	1.6%	1.3%	1.0%	0.84%	0.74%

$\Delta \boldsymbol{B R}(\boldsymbol{H} \rightarrow \boldsymbol{I n v i s})_{0}$ corresponds to the H-20 ILC 95\% C.L. limit of 0.34%

Perform coupling fit with $\sum_{i} \boldsymbol{B R}_{\boldsymbol{i}}=1$ including $\triangle \boldsymbol{B} \boldsymbol{R}(\boldsymbol{H} \rightarrow \boldsymbol{B S M})$
(the constraint $\sum_{i} \boldsymbol{B} \boldsymbol{R}_{i}=1$ is model independent if $\triangle \boldsymbol{B} \boldsymbol{R}(\boldsymbol{H} \rightarrow \boldsymbol{B S M})$ is included in the fit)
CEPC Higgs Coupling Precision assuming $5 \mathrm{ab}^{-1}$

$\frac{\Delta \boldsymbol{B R}(\boldsymbol{H} \rightarrow \boldsymbol{B S M})}{\Delta \boldsymbol{B R}(\boldsymbol{H} \rightarrow \text { Invis })_{0}}$	∞	8	4	2	1	0.1
$\boldsymbol{Z Z}$	0.26%	0.24%	0.22%	0.19%	0.18%	0.17%
$\boldsymbol{W W}$	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%
$\boldsymbol{b} \boldsymbol{b}$	1.3%	1.3%	1.2%	1.2%	1.2%	1.2%
$\boldsymbol{\tau}^{+} \boldsymbol{\tau}^{-}$	1.4%	1.4%	1.4%	1.4%	1.3%	1.3%
$\boldsymbol{g g}$	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%
$\boldsymbol{c c}$	1.7%	1.7%	1.7%	1.6%	1.6%	1.6%
$\gamma \boldsymbol{\gamma \gamma}$	4.7%	4.7%	4.7%	4.7%	4.7%	4.7%
$\Gamma_{\text {tot }}$	2.8%	2.7%	2.5%	2.4%	2.3%	2.3%

$\Delta \boldsymbol{B R}(\boldsymbol{H} \rightarrow \text { Invis })_{0}$ corresponds to the $5 \mathrm{ab}^{-1}$ CEPC 95\% CL limit of 0.28% 40% improvement in $\Delta \mathrm{g}_{\mathrm{z}}$ if $\Delta \boldsymbol{B R}(\boldsymbol{H} \rightarrow \boldsymbol{B S M}) \approx \Delta \boldsymbol{B R}(\boldsymbol{H} \rightarrow$ Invis $)$

Perform coupling fit with $\sum_{i} \boldsymbol{B} \boldsymbol{R}_{\boldsymbol{i}}=1$ including $\triangle \boldsymbol{B} \boldsymbol{R}(\boldsymbol{H} \rightarrow \boldsymbol{B S M})$ for (the constraint $\sum_{i} \boldsymbol{B} \boldsymbol{R}_{\boldsymbol{i}}=1$ is model independent if $\triangle \boldsymbol{B R}(\boldsymbol{H} \rightarrow \boldsymbol{B S M})$ is included in the fit)

Higgs Coupling Precision $5 \mathrm{ab}^{-1}$ CEPC $+\mathrm{H}-20$ ILC

$\frac{\Delta \boldsymbol{B R}(\boldsymbol{H} \rightarrow \boldsymbol{B S M})}{\Delta \boldsymbol{B R}(\boldsymbol{H} \rightarrow \text { Invis })_{0}}$	∞	8	4	2	1	0.1
$\boldsymbol{Z Z}$	0.20%	0.19%	0.17%	0.14%	0.13%	0.12%
$\boldsymbol{W W}$	0.26%	0.25%	0.22%	0.19%	0.17%	0.17%
$\boldsymbol{b} \boldsymbol{b}$	0.47%	$0 . \%$	0.41%	0.37%	0.34%	0.33%
$\boldsymbol{\tau}^{+} \boldsymbol{\tau}^{-}$	0.65%	0.63%	0.61%	0.58%	0.57%	0.56%
$\boldsymbol{g g}$	0.70%	0.69%	0.68%	0.66%	0.66%	0.65%
$\boldsymbol{c c}$	0.86%	0.85%	0.83%	0.82%	0.81%	0.80%
$\boldsymbol{\gamma \gamma}$	2.6%	2.6%	2.6%	2.6%	2.6%	2.6%
$\Gamma_{\text {tot }}$	1.2%	1.1%	0.96%	0.76%	0.64%	0.58%

$\Delta \boldsymbol{B R}(\boldsymbol{H} \rightarrow \text { Invis })_{0}$ corresponds to either the H-20 ILC 95\% C.L. limit of 0.34\% or the $5 \mathrm{ab}^{-1}$ CEPC 95% CL limit of 0.28%

ILC $250+350+500 \mathrm{GeV}$ with $2000+200+4000 \mathrm{fb}^{-1}$ (H-20 scenario full run $\Rightarrow 20.2$ yrs)
CEPC 250 GeV with $5000 \mathrm{fb}^{-1}$
ILC + CEPC under the conditions listed above

$$
\frac{\Delta B R(H \rightarrow B S M)}{\Delta B R(H \rightarrow \text { Invis })_{0}}=\infty
$$

$$
\frac{\Delta B R(H \rightarrow B S M)}{\Delta B R(H \rightarrow \text { Invis })_{0}}=1
$$

How Do You Measure $\sigma \cdot B R_{\text {BSM }}$?

- Use $B R_{B S M}=1-\sum_{\text {sM decays } i} B R_{i}$

This can be used for estimating the systemtatic errors for $\sigma(\mathrm{ZH})$ and the $\mathrm{SM} \sigma \cdot \mathrm{BR}$'s. It can't of course be used to improve Higgs couplings through the constraint $\sum_{\mathrm{i}} B R_{i}=1$. This approach assumes negligible contimination of SM $\sigma \cdot$ BR analyses by BSM events, and so is model dependent.
The error in this case is
$\left(\Delta B R_{B S M}\right)^{2}=\sum_{\text {SM decaysi } i}\left[\left(\frac{\Delta \sigma \cdot B R_{i}}{\sigma \cdot B R_{i}}\right)^{2}+\left(\frac{\Delta \sigma_{z H}}{\sigma_{z H}}\right)^{2}\right]\left(B R_{i}\right)^{2}$
which can be pretty good given that $\sigma \cdot B R_{i}$ is measured well for decay channels with large BR's. This technique was used to obtain $\Delta B R_{B S M}=0.04$ in the discussion of the $\sqrt{s}=350 \mathrm{GeV} \sigma(\mathrm{ZH})_{\text {hadronic }}$ systematic error.

How Do You Measure $\sigma \cdot B R_{\text {BSM }}$?

- Include a BSM contribution in each of the $\mathrm{SM} \sigma \cdot B R_{i}$ analyses when doing the correlated global fit of all SM $\sigma \cdot B R_{i}$

The problem here is the unknown efficiency for BSM decays to pass the selection for each decay channel. One might also gain additional information by performing the ZH leptonic and hadronic recoil analysis on an event sample from which all events passing SM $\sigma \cdot B R_{i}$ analyses have been removed. Work is ongoing to develop this kind of procedure.

- Go through a long list of BSM decay topologies, perform a dedicated search for each, and then convince yourself that all possible BSM decay topologies have been covered.

Sort of a brute force approach, but it might be the only way. Tricky part is proving that all topologies have been accounted for.

215 page "Exotic Decays of the 125 GeV Higgs Boson" arXiv:1312.4992

Contents
Introduction and Overview 7
1.1. General Motivation to Search for Exotic Higgs Decays 8
1.2. Exotic Decay Modes of the 125 GeV Higgs Boson 13
1.3. Theoretical Models for Exotic Higgs Decays 19
1.3.1. $\mathrm{SM}+$ Scalar 19
1.3.2. 2HDM (+ Scalar) 23
1.3.3. $\mathrm{SM}+$ Fermion 35
.3.4. $\mathrm{SM}+2$ Fermions 39
.3.5. SM + Vector 41
1.3.6. MSSM 49
3.7. NMSSM with exotic Higgs decay to scalars 51
.3.8. NMSSM with exotic Higgs decay to fermions 53
.3.9. Little Higgs 56
1.3.10. Hidden Valleys 57
. $\mathrm{h} \rightarrow \mathrm{E}_{\mathrm{T}}$ 62
2.1. Theoretical Motivation 62
2. Existing Collider Studies 63
2.3. Existing Experimental Searches and Limits 64
3. $\mathrm{h} \rightarrow 4 \mathrm{~b}$ 64
3.1. Theoretical Motivation 65
3.2. Existing Collider Studies 66
3.3. Existing Experimental Searches and Limits 67
3.4. Proposals for New Searches at the LHC 69
. $\mathrm{h} \rightarrow 2 \mathrm{~b} 2 \tau$ 70
4.1. Theoretical Motivation 70
4.2. Existing Collider Studies 70
4.3. Discussion of Future Searches at the LHC 71
5. $\mathrm{h} \rightarrow 2 \mathrm{~b} 2 \mu$ 72
5.1. Theoretical Motivation 73
5.2. Existing Collider Studies and Experimental Searches 73
5.3. Proposals for New Searches at the LHC 74
6. $\mathrm{h} \rightarrow 4 \tau, 2 \tau 2 \mu$ 79
6.1. Theoretical Motivation 79
6.2. Existing Collider Studies 82
6.3. Existing Experimental Searches and Limits 84
6.4. Proposals for New Searches at the LHC 90
7. $\mathrm{h} \rightarrow 4 \mathrm{j}$ 93
7.1. Theoretical Motivation 94
7.2. Existing Collider Studies 95
7.3. Existing Experimental Searches and Limits 96
8. $\mathrm{h} \rightarrow 2 \gamma 2 \mathrm{j}$ 97
8.1. Theoretical Motivation 97
8.2. Existing Collider Studies 98
8.3. Existing Experimental Searches and Limits 100
8.4. Proposals for Future Searches 100
9. $\mathrm{h} \rightarrow 4 \gamma$ 101
9.1. Theoretical Motivation 101
9.2. Existing Collider Studies 102
9.3. Existing Experimental Searches and Limits 105
9.4. Proposals for New Searches at the LHC 105
10. $\mathrm{h} \rightarrow \mathrm{ZZ}_{\mathrm{D}}, \mathrm{Za} \rightarrow 4 \ell$ 106
10.1. Theoretical Motivation 106
10.1.1. $h \rightarrow Z Z_{D}$ 106
10.1.2. $h \rightarrow Z a$ 107
10.2. Existing Collider Studies 108
10.3. Existing Experimental Searches and Limits 108
10.4. Proposals for New Searches at the LHC 111
11. $\mathrm{h} \rightarrow \mathrm{Z}_{\mathrm{D}} \mathrm{Z}_{\mathrm{D}} \rightarrow 4 \ell$ 112
111. Theoretical Motivation 112
11.2. Existing Collider Studies 113
11.3. Existing Experimental Searches and Limits 113
12. $\mathrm{h} \rightarrow \boldsymbol{\gamma}+\mathrm{E}_{\mathrm{T}}$ 118
12.1. Theoretical Motivations 118
12.2. Existing Collider Studies 119
12.3. Existing Experimental Searches and Limits 120
13. $\mathrm{h} \rightarrow 2 \gamma+\mathrm{E}_{\mathrm{T}}$ 122
13.1. Theoretical Motivation 123
13.1.1. Non-Resonant 123
13.1.2. Resonant 124
13.1.3. Cascade 125
13.2. Existing Experimental Searches and Limits 125
14. $\mathrm{h} \rightarrow 4$ Isolated Leptons $+\mathrm{Fr}_{\mathrm{I}}$ 128
14.1. Theoretical Motivation 129
14.2. Existing Experimental Searches and Limits 130
15. $\mathrm{h} \rightarrow 2 \ell+\mathrm{E}_{\mathrm{T}}$ 136
15.1. Theoretical Motivation 136
15.2. Existing Experimental Searches and Limits 137
16. $\mathrm{h} \rightarrow$ One Lepton-jet +X 140
16.1. Theoretical Motivation 141
16.2. Existing Collider Studies 143
16.3. Existing Experimental Searches and Limits 144
16.4. Proposals for New Searches at the LHC 145
17. $\mathrm{h} \rightarrow$ Two Lepton-jets +X 145
17.1. Theoretical Motivation 145
17.2. Existing Collider Studies 147
17.3. Existing Experimental Searches and Limits 147
18. $\mathrm{h} \rightarrow \mathrm{b} \overline{\mathrm{b}}+\mathrm{E}_{\mathrm{T}}$ 149
18.1. Theoretical Motivation 150
18.2. Existing Collider Studies 151
18.3. Existing Experimental Searches and Limits 151
19. $\mathbf{h} \rightarrow \boldsymbol{\tau}^{+} \boldsymbol{\tau}^{-}+\mathbf{E}_{\mathrm{T}}$ 152
19.1. Theoretical Motivation 152
19.2. Existing Collider Studies 153
19.3. Existing Experimental Searches and Limits 154
20. Conclusions \& Outlook 154
20.1. How to interpret the tables 155
20.2. Final States Without F_{T} 156
20.2.1. $h \rightarrow a a \rightarrow$ fermions 156
20.2.2. $h \rightarrow a a \rightarrow$ SM gauge bosons 158
20.2.3. $h \rightarrow Z_{D} Z_{D}, Z Z_{D}, Z a$ 159
20.3. Final States with F_{T} 162
20.3.1. Larger \dot{B}_{T}, without resonances 164
20.3.2. Larger \dot{E}_{T}, with resonances 166
20.3.3. Small H_{T} 170
20.3.4. Summary 171
20.4. Collimated objects in pairs 171
20.5. For further study 174
20.6. Summary of Suggestions 175
A. Decay Rate Computation for $2 \mathrm{HDM}+\mathrm{S}$ Light Scalar and Pseudoscalar 179
A.1. Light Singlet Mass Above 1 GeV 180
A.2. Light Singlet Mass Below 1 GeV 183
B. Surveying Higgs phenomenology in the PQ-NMSSM 185
References 188

Summary

- BSM decays of the Higgs are of course important in their own right. However, even if no evidence for BSM decays is found, the model independent limit that can be placed on BSM decays affects the SM coupling measurements. It is important in evaluating the systematic errors for $\sigma(\mathrm{ZH})$ and the $\sigma \cdot \mathrm{BR}$'s, and strong limits on BSM decays are needed to squeeze the last bit of Higgs coupling precision out of the data (the CEPC $\Delta \mathrm{g}_{z}=0.26 \%$ improves to 0.18% if $\Delta B R(H \rightarrow B S M) \approx \Delta B R(H \rightarrow I n v i s))$.
- Work is ongoing to estimate $B R(H \rightarrow B S M)$ at CEPC using several techniques.

Backup Slides

Higgs Physics Systematic Errors

Model Independence of ZH Recoil Measurements

In order to use the hadronic ZH recoil measurement in our Higgs analyses we have to quantify the penalty associated with the fact that $\sigma(Z H \rightarrow q \bar{q}+X)$ is "almost model independent". By how much must we blow up $\Delta \sigma(Z H \rightarrow q \bar{q}+X)$ to account for the fact that the efficiencies differ by as much as 7% ?

ћ Combining visible + invisible analysis: wanted M.I.

- i.e. efficiency independent of Higgs decay mode

Model Independence of ZH Recoil Measurements

It is not sufficient to vary the SM Higgs branching ratios to estimate this systematic error. The problem is the BSM decays; they
cannot be accounted for in this way.

To handle the BSM decays we have used an approach where we use all of our $\sigma \cdot B R$ measurements for SM Higgs decays to obtain an estimate of the average signal efficiency for $\sigma(Z H \rightarrow q \bar{q}+X)$. It is then straightforward to propagate the $\sigma \cdot B R_{i}$ errors, as well as the systematic errors on the individual decay mode efficiencies for the $\sigma(Z H \rightarrow q \bar{q}+X)$ selection, to the error on $\sigma(Z H \rightarrow q \bar{q}+X)$.

Model Independence of ZH Recoil Measurements

Let
$\Psi \equiv \sigma(Z H \rightarrow q \bar{q}+X)$
$\Omega=$ Number of signal + background events in $\sigma(Z H \rightarrow q \bar{q}+X)$ analysis
$\mathrm{B}=$ Predicted number of background events in $\sigma(Z H \rightarrow q \bar{q}+X)$ analysis
$\Xi=$ Average efficiency for signal events to pass $\sigma(Z H \rightarrow q \bar{q}+X)$ analysis
$L=$ luminosity
$\Psi=\frac{\Omega-\mathrm{B}}{L \Xi}=\frac{1}{\Xi} \sum_{i} \psi_{i} \xi_{i}=\sum_{i} \psi_{i} \quad$ where
$\psi_{i}=\sigma(Z H) \cdot B R_{i}$
$\xi_{i}=$ efficiency for events from Higgs decay i to pass $\sigma(Z H \rightarrow q \bar{q}+X)$ analysis
$\Xi=\frac{\sum_{i} \psi_{i} \xi_{i}}{\sum_{i} \psi_{i}}$

$$
\psi_{i}=\frac{\omega_{i}-\beta_{i}}{L \eta_{i}}
$$

$\omega_{i}=$ Number of signal + background events in $\sigma(Z H) \cdot B R_{i}$ analysis
$\beta_{i}=$ Predicted number of background events in $\sigma(Z H) \cdot B R_{i}$ analysis
$\eta_{i}=$ efficiency for Higgs decay i to pass $\sigma \cdot B R_{i}$ analysis
$K_{i}=$ number of signal + background events common to had Z recoil and $\sigma \cdot B R_{i}$ analyses
$\mathrm{E}=$ number of signal + background events unique to had Z recoil analysis
$\varepsilon_{i}=$ number of signal + background events events unique to $\sigma \cdot B R_{i}$ analysis

$$
\begin{array}{lll}
\Omega=\mathrm{E}+\sum_{i} \mathrm{~K}_{i} & S \equiv \Omega-\mathrm{B} & \mathrm{~T} \equiv \frac{\sqrt{\mathrm{~S}+\mathrm{B}}}{\mathrm{~S}} \\
\omega_{i}=\mathrm{K}_{i}+\varepsilon_{i} & s_{i} \equiv \omega_{i}-\beta_{i} & \tau_{i} \equiv \frac{\sqrt{\mathrm{~S}_{i}+\beta_{i}}}{\mathrm{~S}_{i}} \\
\lambda_{i} \equiv \frac{\mathrm{~K}_{i}}{\omega_{i}} & N \equiv L \sigma_{z H} & r_{i} \equiv B R_{i}
\end{array} \delta_{i} \equiv \xi_{i}-\Xi
$$

$\left(\frac{\Delta \Psi}{\Psi}\right)^{2}=\mathrm{T}^{2}\left\{1+\frac{N^{2}}{\Omega} \sum_{i} r_{i}^{2}\left[\tau_{i}^{2}\left(\delta_{i}^{2}-2 \lambda_{i} \eta_{i} \delta_{i}\right)+\Delta \xi_{i}^{2}\right]\right\} \begin{aligned} & \text { This is our result for the error on } \\ & \sigma(Z H \rightarrow q \bar{q}+X)\end{aligned}$

Model Independence of ZH Recoil Measurements

$\left(\frac{\Delta \sigma(Z H \rightarrow q \bar{q}+X)}{\sigma(Z H \rightarrow q \bar{q}+X)}\right)^{2}=\mathrm{T}^{2}\left\{1+\frac{N^{2}}{\Omega} \sum_{i} r_{i}^{2}\left[\tau_{i}^{2} \delta_{i}^{2}+\Delta \xi_{i}^{2}\right]\right\} \quad$ i.e. sys err $=\frac{1}{2} \frac{N^{2}}{\Omega} \sum_{i} r_{i}^{2}\left[\tau_{i}^{2} \delta_{i}^{2}+\Delta \xi_{i}^{2}\right]$

Assume $\sqrt{s}=350 \mathrm{GeV}$ and $\mathrm{L}=500 \mathrm{fb}^{-1}$
$N=L \sigma_{z H}=45383 \quad r_{i}=B R_{i}=\left(1-B R_{B S M}\right) B R_{i}(S M) \quad \tau_{i}(S M)=\frac{\Delta \sigma \bullet \mathrm{BR}_{i}(S M)}{\sigma \bullet \mathrm{BR}_{i}(S M)}=\frac{\sqrt{s_{i}+\beta_{i}}}{s_{i}}$

Assume $\quad \mathrm{T}=\frac{\sqrt{S+B}}{S}=0.014 \quad \Omega=\mathrm{S}+\mathrm{B}=17738$ and $\xi_{i}(S M)$ given in the table four pages back.

We assume that the vis+invis efficiency values in the table four pages back cover all possible BSM decays since they cover all SM decays from completely invisible to fully hadronic multi-jet decays. Assuming no knowledge of the properties of the BSM decays we can then set
$\xi_{\text {BSM }}=0.5 *\left[\xi_{\text {vistinvis }}(\max)+\xi_{\text {vis }+ \text { invis }}(\mathrm{min})\right]=0.5 *[0.258+0.188]=0.22$
$\Delta \xi_{B S M}=0.5 *\left[\xi_{\text {vistinvis }}(\max)-\xi_{\text {vistinvis }}(\mathrm{min})\right]=.035$

Model Independence of ZH Recoil Measurements

$\left(\frac{\Delta \sigma(Z H \rightarrow q \bar{q}+X)}{\sigma(Z H \rightarrow q \bar{q}+X)}\right)^{2}=\mathrm{T}^{2}\left\{1+\frac{N^{2}}{\Omega} \sum_{i} r_{i}^{2}\left[\tau_{i}^{2} \delta_{i}^{2}+\Delta \xi_{i}^{2}\right]\right\} \quad$ i.e. sys err $=\frac{1}{2} \frac{N^{2}}{\Omega} \sum_{i} r_{i}^{2}\left[\tau_{i}^{2} \delta_{i}^{2}+\Delta \xi_{i}^{2}\right]$

We next obtain the error $\frac{\Delta \sigma \bullet \mathrm{BR}_{B S M}}{\sigma \bullet \mathrm{BR}_{B S M}}$ from Michael Peskin's Higgs coupling fit program. We do not use the $\sum_{i} B R_{i}=1$ constraint, and to begin with we only use the leptonic recoil $\sigma_{z H}$ measurement.
This provides a model independent measurement of $g_{B S M}$. For $\sqrt{s}=350 \mathrm{GeV}, \mathrm{L}=500 \mathrm{fb}^{-1}$ Michael's program gives $\frac{\Delta \mathrm{g}_{B S M}}{\mathrm{~g}_{B S M}}=0.032$ which we multiply by two to get $\frac{\Delta \sigma \bullet \mathrm{BR}_{B S M}}{\sigma \bullet \mathrm{BR}_{B S M}}=0.064$. We take this error to mean that $0<B R(H \rightarrow B S M)<2 \times 0.064$, and set the measured $B R(H \rightarrow B S M)=0.064$. This gives a model independent hadronic recoil cross section error of $\frac{\Delta \sigma(Z H \rightarrow q \bar{q}+X)}{\sigma(Z H \rightarrow q \bar{q}+X)}=0.014 * 1.27=0.018$.

We then add this new model indepdendent hadronic recoil $\sigma_{z H}$ measurement as input to Michael's program to obtain a new error $\frac{\Delta \sigma \bullet \mathrm{BR}_{B S M}}{\sigma \bullet \mathrm{BR}_{B S M}}=0.041$. Setting $B R(H \rightarrow B S M)=0.041$ we then obtain a new model independent hadronic recoil $\sigma_{z H}$ error of $\frac{\Delta \sigma(Z H \rightarrow q \bar{q}+X)}{\sigma(Z H \rightarrow q \bar{q}+X)}=0.014 * 1.12=0.016$.

Iterating again we arrive at $B R(H \rightarrow B S M)=0.039$ and $\frac{\Delta \sigma(Z H \rightarrow q \bar{q}+X)}{\sigma(Z H \rightarrow q \bar{q}+X)}=0.014 * 1.11=0.016$. Further interations don't give any improvement.

Model Independence of ZH Recoil Measurements

$\left(\frac{\Delta \sigma(Z H \rightarrow q \bar{q}+X)}{\sigma(Z H \rightarrow q \bar{q}+X)}\right)^{2}=\mathrm{T}^{2}\left\{1+\frac{N^{2}}{\Omega} \sum_{i} r_{i}^{2}\left[\tau_{i}^{2} \delta_{i}^{2}+\Delta \xi_{i}^{2}\right]\right\} \quad$ i.e. sys err $=\frac{1}{2} \frac{N^{2}}{\Omega} \sum_{i} r_{i}^{2}\left[\tau_{i}^{2} \delta_{i}^{2}+\Delta \xi_{i}^{2}\right]$

We have shown that $\frac{1}{2} \frac{N^{2}}{\Omega} \sum_{i} r_{i}^{2}\left[\tau_{i}^{2} \delta_{i}^{2}+\Delta \xi_{i}^{2}\right]=0.11$ for $\sqrt{s}=350 \mathrm{GeV}$, $\mathrm{L}=500 \mathrm{fb}^{-1}$.

How does this scale with luminosity?
$\frac{N^{2}}{\Omega} \propto L \quad \tau_{i}^{2} \propto L^{-1} \quad r_{i}^{2}$ is independent of lumi except $r_{B S M}^{2}=\tau_{B S M}^{2} \propto L^{-1}$.
If we assume $\Delta \xi_{i}=0$ except $\Delta \xi_{\text {BSM }}=0.035$ then
$\frac{1}{2} \frac{N^{2}}{\Omega} \sum_{i} r_{i}^{2}\left[\tau_{i}^{2} \delta_{i}^{2}+\Delta \xi_{i}^{2}\right]=0.11$ independent of the luminosity at $\sqrt{s}=350 \mathrm{GeV}$.

Model Independence of ZH Recoil Measurements

Caveats for hadronic recoil systematic error calculation :
(1) This systematic error analysis was only done at $\sqrt{s}=350 \mathrm{GeV}$; it has not yet been done for $\sqrt{s}=250 \& 500 \mathrm{GeV}$
(2) These results assume that the true $r_{B S M}=B R(H \rightarrow B S M)$ is small. As the true $r_{B S M}$ grows we need to keep the product $r_{B S M} \Delta \xi_{B S M}$ constant to maintain the same systematic error, where $\xi_{B S M}$ is the effieciency for BSM Higgs decays to pass the hadronic recoil analysis. For example
true $r_{B S M}$ required $\Delta \xi_{B S M}$

.05	0.027
.10	0.014
.15	0.0091
.20	0.0068

These $\Delta \xi_{B S M}$ requirements may seem stringent for the larger values of true $r_{B S M}$. However as $r_{B S M}$ grows we will have more BSM decays to analyze and the required improvement in Monte Carlo modelling of the BSM decays should follow.

$$
\Psi \equiv \sigma(Z H) \cdot B R(\text { visible })
$$

$\Omega=$ Number of signal + background events in $\sigma(Z H) \cdot B R($ visible $)$ analysis
$\mathrm{B}=$ Predicted number of background events in $\sigma(Z H) \cdot B R($ visible) analysis
$\Xi=$ Average efficiency for signal events to pass $\sigma(Z H) \cdot B R($ visible) analysis
$L=$ luminosity
$\Psi=\frac{\Omega-\mathrm{B}}{L \Xi}=\frac{1}{\Xi} \sum_{i} \psi_{i} \xi_{i}=\sum_{i} \psi_{i} \quad$ where
$\psi_{i}=\sigma(Z H) \cdot B R_{i}$
$\xi_{i}=$ efficiency for events from Higgs decay i to pass $\sigma(Z H) \cdot B R($ visible) analysis
$\Xi=\frac{\sum_{i} \psi_{i} \xi_{i}}{\sum_{i} \psi_{i}}$
$\psi_{i}=\frac{\omega_{i}-\beta_{i}}{L \eta_{i}}$
$\omega_{i}=$ Number of signal + background events in $\sigma(Z H) \cdot B R_{i}$ analysis
$\beta_{i}=$ Predicted number of background events in $\sigma(Z H) \cdot B R_{i}$ analysis
$\eta_{i}=$ efficiency for Higgs decay i to pass $\sigma \cdot B R_{i}$ analysis
$K_{i}=$ number of signal + background events common to had Z recoil and $\sigma \cdot B R_{i}$ analyses
$\mathrm{E}=$ number of signal + background events unique to had Z recoil analysis
$\varepsilon_{i}=$ number of signal + background events events unique to $\sigma \cdot B R_{i}$ analysis

$$
\begin{array}{lll}
\Omega=\mathrm{E}+\sum_{i} \mathrm{~K}_{i} & \mathrm{~S} \equiv \Omega-\mathrm{B} & \mathrm{~T} \equiv \frac{\sqrt{\mathrm{~S}+\mathrm{B}}}{\mathrm{~S}} \\
\omega_{i}=\mathrm{K}_{i}+\varepsilon_{i} & s_{i} \equiv \omega_{i}-\beta_{i} & \tau_{i} \equiv \frac{\sqrt{s_{i}+\beta_{i}}}{s_{i}} \\
\lambda_{i} \equiv \frac{\mathrm{~K}_{i}}{\omega_{i}} & N \equiv L \sigma_{z H} & r_{i} \equiv B R_{i}
\end{array} \delta_{i} \equiv \xi_{i}-\Xi
$$

$$
\begin{aligned}
& (\Delta \Psi)^{2}=\left(\frac{\partial \Psi}{\partial \Omega}\right)^{2} V_{\Omega \Omega}+\left(\frac{\partial \Psi}{\partial \Xi}\right)^{2} V_{\Xi \Xi}+2 \frac{\partial \Psi}{\partial \Omega} \frac{\partial \Psi}{\partial \Xi} V_{\Omega \Xi} \\
& \frac{\partial \Psi}{\partial \Omega}=\frac{1}{L \Xi}=\frac{\Psi}{\Omega}\left(1-\frac{\mathrm{B}}{\Omega}\right)^{-1} \quad \frac{\partial \Psi}{\partial \Xi}=-\frac{\Omega-\mathrm{B}}{L \Xi^{2}}=-\frac{\Psi}{\Xi} \\
& V_{\Omega \Omega}=\mathrm{E}+\sum_{i} \mathrm{~K}_{i}=\Omega \\
& V_{\Xi \Xi}=\frac{1}{L^{2} \Psi^{2}} \sum_{i} \frac{\left(\xi_{i}-\Xi\right)^{2}}{\left(\eta_{i}\right)^{2}}\left(\varepsilon_{i}+\mathrm{K}_{i}\right) \\
& V_{\Omega \Xi}=\frac{1}{L \Psi} \sum_{i} \frac{\xi_{i}-\Xi}{\eta_{i}} \mathrm{~K}_{i}
\end{aligned}
$$

$$
\begin{aligned}
\left(\frac{\Delta \Psi}{\Psi}\right)^{2} & =\frac{1}{\Omega^{2}}\left(1-\frac{\mathrm{B}}{\Omega}\right)^{-2} V_{\Omega \Omega}+\frac{1}{\Xi^{2}} V_{\Xi \Xi}-\frac{2}{\Omega \Xi}\left(1-\frac{\mathrm{B}}{\Omega}\right)^{-1} V_{\Omega \Xi} \\
& =\frac{1}{\Omega}\left(1-\frac{\mathrm{B}}{\Omega}\right)^{-2}+\frac{1}{L^{2} \Xi^{2} \Psi^{2}} \sum_{i} \frac{\left(\xi_{i}-\Xi\right)^{2}}{\left(\eta_{i}\right)^{2}}\left(\varepsilon_{i}+\mathrm{K}_{i}\right)-\frac{2}{L \Omega \Xi \Psi}\left(1-\frac{\mathrm{B}}{\Omega}\right)^{-1} \sum_{i} \frac{\xi_{i}-\Xi}{\eta_{i}} \mathrm{~K}_{i} \\
& =\frac{1}{\Omega}\left(1-\frac{\mathrm{B}}{\Omega}\right)^{-2}+\frac{1}{L^{2} \Xi^{2} \Psi^{2}} \sum_{i} \frac{\left(\xi_{i}-\Xi\right)^{2}}{\left(\eta_{i}\right)^{2}}\left(L \eta_{i} \psi_{i}+\beta_{i}\right)-\frac{2}{L \Omega \Xi \Psi}\left(1-\frac{\mathrm{B}}{\Omega}\right)^{-1} \sum_{i} \frac{\xi_{i}-\Xi}{\eta_{i}} \lambda_{i}\left(L \eta_{i} \psi_{i}+\beta_{i}\right) \\
& =\frac{1}{\Omega}\left(1-\frac{\mathrm{B}}{\Omega}\right)^{-2}\left[1+\frac{L}{\Omega} \sum_{i} \frac{\left(\xi_{i}-\Xi\right)^{2}}{\eta_{i}} \psi_{i}\left(1+\frac{\beta_{i}}{\mathrm{~S}_{i}}\right)-\frac{2 L}{\Omega} \sum_{i}\left(\xi_{i}-\Xi\right) \psi_{i} \lambda_{i}\left(1+\frac{\beta_{i}}{S_{i}}\right)\right] \\
& =\frac{S+\mathrm{B}}{S^{2}}\left\{1+\frac{L}{\Omega} \sum_{i}\left(\xi_{i}-\Xi\right) \psi_{i}\left(\frac{s_{i}+\beta_{i}}{s_{i}^{2}}\right)\left[\left(\xi_{i}-\Xi\right) L \psi_{i}-2 \lambda_{i} s_{i}\right]\right\} \\
& =\mathrm{T}^{2}\left\{1+\frac{N^{2}}{\Omega} \sum_{i} r_{i}^{2} \tau_{i}^{2}\left[\delta_{i}^{2}-2 \lambda_{i} \eta_{i} \delta_{i}\right]\right\}
\end{aligned}
$$

What if we don't do a hadronic Z recoil measurement and instead only use $\sigma(Z H) \cdot B R_{i}$ to calculate $\sigma(Z H) \cdot B R($ visible $)=\sum_{i} \sigma(Z H) \cdot B R_{i}$?

$$
\begin{aligned}
& \Psi^{\prime}=\sum_{i} \psi_{i} \quad \psi_{i}=\frac{\omega_{i}-\beta_{i}}{L \xi_{i}} \\
& \left(\Delta \Psi^{\prime}\right)^{2}=\sum_{i}\left(\frac{\partial \Psi^{\prime}}{\partial \omega_{i}}\right)^{2} \omega_{i}, \quad \frac{\partial \Psi^{\prime}}{\partial \omega_{i}}=\frac{1}{L \eta_{i}^{\prime}} \\
& \left(\Delta \Psi^{\prime}\right)^{2}=\frac{1}{L^{2}} \sum_{i}=\frac{1}{L^{2}} \sum_{i} \frac{s_{i}+\beta_{i}}{\xi_{i}^{2}} \\
& \left(\frac{\Delta \Psi^{\prime}}{\Psi^{\prime}}\right)^{2}=\left(\sum_{i} \frac{\omega_{i}-\beta_{i}}{L \xi_{i}}\right)^{-2} \frac{1}{L^{2}} \sum_{i} \frac{S_{i}+\beta_{i}}{\xi_{i}^{2}} \\
& =\frac{S+\mathrm{B}}{S^{2}} \frac{L}{\Omega} \Xi^{2} \sum_{i} \frac{\psi_{i}}{\xi_{i}}\left(1+\frac{\beta_{i}}{S_{i}}\right)
\end{aligned}
$$

Compare this now with our formula for $\left(\frac{\Delta \Psi}{\Psi}\right)^{2}$ for $\lambda_{i}=1$:

$$
\begin{aligned}
\left(\frac{\Delta \Psi}{\Psi}\right)^{2} & =\frac{S+\mathrm{B}}{S^{2}}\left\{1+\frac{1}{\Omega} \sum_{i} \omega_{i}\left[\left(1-\frac{\Xi}{\xi_{i}}\right)^{2}-2\left(1-\frac{\Xi}{\xi_{i}}\right)\right]\right\} \\
& =\frac{S+\mathrm{B}}{S^{2}}\left\{1+\frac{1}{\Omega} \sum_{i} \omega_{i}\left[1-\frac{2 \Xi}{\xi_{i}}+\left(\frac{\Xi}{\xi_{i}}\right)^{2}-2+2 \frac{\Xi}{\xi_{i}}\right]\right\}=\left(\frac{\Delta \Psi^{\prime}}{\Psi^{\prime}}\right)^{2}
\end{aligned}
$$

