

G205

526

Google earth

- Brief overview of future collider detectors
- Muon systems with MPGD
- A few practical examples
- INFN involvement
- Conclusions

Detectors for CEPC and SppC

- Detectors for CEPC could be built right now. They can be thought as developments of the LEP detectors, like the ILD and SID detectors for ILC
- Detectors for SppC are much more challenging and will require extensive R&D before being realised.
 - R&D for HL-LHC is a good starting point, but technologies will have to be pushed even further for SppC (and FCC-hh)
- In both cases muon detectors will be extremely large and will cover ~10000 m² in the barrel and 3-5000 m² in the forward region
- Micro Pattern Gas Detectors (MPGD) could be used now to build a muon system for CEPC, and, with a significant R&D, should be able to cope with the harsher conditions of SppC.

ILC and CLIC detectors

Muon system

Baseline FCC-hh detector

But magnet system would cost close to 0.7 BCHF!! Reasonable?

02/09/2016

- Let us consider the "worst" SppC or FCC-hh conditions foreseen at the moment:
- ✓ L= 2.5 ÷(5) x 10³⁵ cm⁻²s⁻¹

Istituto Nazionale di Fisica Nucleare

zione di Boloan

- ✓ Bunch Crossing = 25 ns, or 5 ns
- ✓ Pile Up 900@25 ns, 180@5 ns BX separation
- ✓ 20 ab⁻¹ integrated luminosity

Muon systems for CEPC-SppC will be very large:

Considering a large solenoid (similar order of magnitudes in other cases as well)

- ✓ o(10000) m^2 in the barrel
- \checkmark ~ 3000 m² in the endcap
- \checkmark ~ 300 m² in the very forward

Given the requirement on the surface, almost unthinkable to use technologies different from gas detectors.

02/09/2016

Paolo Giacomelli - INFN Bologna

Have to provide Bunch Crossing identification

- ✓ time resolution \leq 1 ns for 5 ns BC
- ✓ time resolution \leq 7 ns for 25 ns BC
- \checkmark o(100) ps could be desirable for specific applications:
 - Time structure of the event, Pile Up mitigation, Muon tagging
 - Generally difficult to achieve, requires a strong physics case

Have to operate in high background

(very large uncertainties depending on shielding, actual structure,etc.)

- ✓ o(few kHz/cm²) in the barrel
- ✓ o(10-50 kHz/cm²) in the endcap
- ✓ Even more, o(100 kHz/cm²) in the forward regions

	Barrel Shielded	Barrel Unshielded	Endcap
Dose (Gy/year)	50	500	
Fluence (KHz/cm ²)	5	250	

Have to operate for ≈ 20 years

- \checkmark Ageing issues to be carefully considered
- \checkmark Detector will be exposed to a radiation level about
 - 10 times higher than HL-LHC@same pseudorapidity (SppC)
 - (2x higher cross section, 4x higher peak luminosity)
 - > 10-25 C/cm for wire chambers
- \checkmark None of the present detectors have been tested up to those values
- Have to provide tracking (?)

...in certain positions/scenarios, or will this be provided by the inner tracker?

✓ 20-50 µm or better spatial resolution
 to provide 10% p_T resolution at a few TeV

Have to provide trigger

L SEI EHT 20.0 KV HD 24 m HNS X 1.00 K PHOTO-0 JnD/6.6.37/JnD HIRES CHARRER HNS HORA 143

The MPGD zoo of the 90s

M.Abbrescia

- ≻MPGDs suitable for a CEPC muon system
- >Use of the current detector technologies at SppC implies an important R&D to overcome some of the present limits
- This R&D has already started for HL-LHC, but will need to be pushed further (at least quantitatively) for SppC:
- Micro Pattern Gas Detectors
 - ✓ Large scale production: will o(several 1000 m²) production and operation (electronics, stability, ...) of MPGDs be feasible?
- ≻ All detectors:
 - ✓ Ageing issues must be carefully studied and taken care of!
 - ✓ Gas issues have to be taken care of: gas is the "core" of a gas detector. Study ecofriendly (low global warming power) gas mixtures

GEMs: the construction challenge

The construction of the GEM requires some assembly steps such as **the stretching of the 3 GEM foils,** with a quite **large mechanical tension** to cope with $\rightarrow \sim 1 \text{ kg/cm}$. **Improvements in the GEM construction process** has been recently introduced by R. de Oliveira (NS2 detector assembly scheme): **no gluing, no soldering, no spacer in the active area** \rightarrow **re-opening of the detector if repairs needed became possible.**

But the GEM construction still remains a demanding & complex operation → requiring delicate stretching with specialized manpower.

NS2(CERN): no gluing but still stretching ... GND GND External screws to adjust stretching GEM attaching structure (4 pieces defining gaps)

Paolo Giacomelli - INFN Bologna

Anode

CSC GEM upgrade

The µ-RWELL architecture

From G. Bencivenni

INFN Istituto Nazionale di Fisica Nucleare Sezione di Bologna

Towards large area & detector engineering

2016

12/2017-6/2018

12/2016

In the framework of the CMS-phase2 muon upgrade we are developing large size µ-RWELL. The R&D is performed in strict collaboration with Italian industrial partners (ELTOS SpA & MDT). The work will be performed in two years with following schedule:

- 1. Construction & test of the first **1.2x0.5m² (GE1/1) µ-RWELL**
- 2. Mechanical study and mock-up of 1.8x1.2 m² (GE2/1) µ-RWELL
- 3. Construction & test of the first 1.8x1.2m² (GE2/1) μ-RWELL

02/09/2016

The µ-RWELL performance: Beam Tests

H4 Beam Area (RD51) Muon beam momentum: 150 GeV/c Goliath: B up to 1.4 T

GEMs Trackers

BES III-GEM chambers

µ-RWELL prototype 12-80-880 MΩ /□ 400 µm pitch strips APV25 (**CC analysis**) Ar/iC₄H₁₀ = 90/10

GOLIATH

Paolo Giacomelli - INFN Bologna

INFN and MPGD detectors

INFN groups have a very good experience on MPGD detectors. They have been active in this domain for several years.

Many technologies have been developed and tested

- ≻GEMs
- ≻THGEMs
- ≻ MicroMegas
- ≻µRwell
- Need to transfer these technologies to industry. Work started in conjunction with a few european and asian industries.
- R&D pursued in several contexts: RD51, HL-LHC Phase 2 upgrades, AIDA-2020
- R&D also started on eco-friendly gas mixtures

- MPGDs offer a very attractive solution for future muon systems at CEPC, SppC and FCC
- > MPGDs fulfil these requirements:
 - > Precise spatial resolution o(50 µm)
 - Sood timing resolution o(1 ns). Specialised MPGDs (FTM) could reach o(100 ps)
 - > High rate capability (still to be improved for the very forward region at SppC)
 - ≻ Modular
 - ➤ Cost effective
- R&D started for developing large area detectors suitable for mass production
- > A few companies are collaborating already, will look for more industrial partners
- INFN has started a work package dedicated to the study of MPGDs for building muon systems for future experiments

02/09/2016

Paolo Giacomelli - INFN Bologna

Backup slides

Design of FCC-ee Detectors

Adapted from ILC/CLIC detector: Experience with LEP detectors and ~20 years R&D for LC

Some physics differences

- -- Lower maximum energy 400GeV vs. >1000 GeV
- → Momentum & energy resolution requirements
- -- Higher statistics need matching systematics

Some technical differences

- -- High physics rate: 100 kHz Zs, must keep all.
- -- No bunching \rightarrow cooling issues
- -- better definition of beam energy and lower beam induced backgrounds

Future Circular Collider Study Michael Benedikt 2nd FCC Week, Rome, April 2016

Detector Concepts for 100 TeV pp

A B=6 T, R=6 m solenoid with shielding coil and 2 dipoles has been engineered in detail.

Different alternative magnet systems are also being explored.

- large η acceptance
- radiation levels of >50 x LHC Phase II
- pileup of ~1000

R&D for FCC detectors is a natural continuation of the R&D for LHC Phase II upgrade

Future Circular Collider Study Michael Benedikt 2nd FCC Week, Rome, April 2016

Other ideas for a FCC-hh detector

Twin solenoid with dipoles (min. shaft diameter 27.5m)

Cheaper/simpler systems? Reduce dimensions/field of magnet system?

Partially shielded solenoid with dipoles

Unshielded solenoid with dipoles (min. shaft diameter 16.3m, if rotated under ground)

Twin solenoid with balanced conical solenoid

Unshielded solenoid with balanced conical solenoid

Herman Ten Kate, Matthias Mentink

Layout of a FCC-hh Detector

Barrel:

Tracker available space: R=2.1cm to R=2.5m, L=8m

EMCAL available space: R=2.5m to R= $3.6m \rightarrow dR= 1.1m$

HCAL available space: R= 3.6m to R=6.0m \rightarrow dR=2.4m

Coil+Cryostat: R= 6m to R= 7.825 → dR = 1.575m, L=10.1m

Muon available space: R= 7.825m to R= $13m \rightarrow dR = 5.175m$ Revision of outer radius is ongoing.

Endcap:

EMCAL available space: z=8m to z= 9.1m \rightarrow dz= 1.1m

HCAL available space: z= 9.1m to z=11.5m \rightarrow dz=2.4m

Muon available space: z= 11.5m to z= 14.8m \rightarrow dz = 3.3m

Forward:

Dipole: z= 14.8m to z= 21m \rightarrow dz=6.2m

FTracker available space: z=21m to R=24m, L=3m

FEMCAL available space: Z=24m to z= $25.1m \rightarrow dz= 1.1m$

FHCAL available space: z= 25.1m to z=27.5m \rightarrow dz=2.4m

FMuon available space: z= 27.5m to z=31.5m → dz=4m

Muon detector technologies

Muon Chamber Technology	Deployment	Comments
Drift Tubes with field shaper electrodes	Barrel Tracking & Triggering Cell resol'n (rφ) < 250 μm	CMS
MDT (Monitored Drift Tubes) 3 cm dia.	Barrel Tracking Tube resol'n (rθ) ~ 150 μm resolution	ATLAS
Small Diameter MDT 1.5 cm dia.	Tracking in some special regions of barrel	ATLAS
Cathode Strip Chambers (CSC)	Endcaps Tracking & CMS Triggering ATLAS: η strip pitch 5.5 mm, φ strip pitch 13 - 21 mm	CMS and ATLAS (2< η <2.7)
Micromegas	Endcaps Tracking & Triggering Readout pitch ~ 0.4 mm	ATLAS Phase I Upgrade New Small Wheel
Thin Gap Chambers (TGC)	Endcaps Triggering & Tracking 2nd coordinate	ATLAS 1st and 2nd stations Endcap
Small-strip Thin Gap Chambers (sTGC)	Endcaps Triggering & Tracking Fast enough for BC tagging 95% τ < 25 ns; 3 mm strip-pitch	ATLAS Phase I Upgrade New Small Wheel
Resistive Plate Chambers (RPC)	Barrel and Endcaps Triggering Fast τ ~ 3ns ATLAS: η strip pitch ~ 30 mm, φ strip pitch ~ 30 mm	ATLAS and CMS
Low Resistivity RPC	Higher rate capability $10^{10} \Omega$ cm	R&D
Multi-gap Resistive Plate Chamber	Very fast τ ~ 50 ps	ALICE and R&D
GEMs (3 layer)	Endcaps Rate ~ 10 ⁵ Hz/cm ² Fast τ ~ 4-5 ns	CMS Phase I Test & Phase II

Readout-PCB production @ ELTOS

- ✓ 10 Feb: ELTOS send formal offer for n.2 kit µ-RWELL (GE1/1 type)
 ✓ 25 Feb: order for n.3 kit µ-RWELL completed
- ✓ **5 April:** PCB-readout (type GE1/1) completed at ELTOS

From G. Bencivenni

CSC GEM upgrade

Istituto Nazionale di Fisica Nucleare

ezione di Boloana

NS2 Technique

- No spacers in active area
- Assembly time : 2 hours
- No gluing, no soldering
- Re-opening possible
- GEM exchange possible
- No stretch degradation with time
- Stretching more intense

