

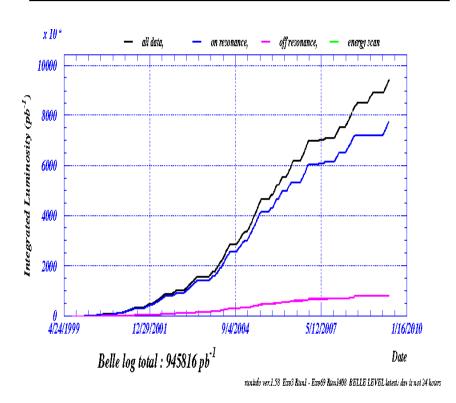
D^{O} - \overline{D}^{O} Mixing and other Charm Decays at Belle

Li ZHAO

USTC

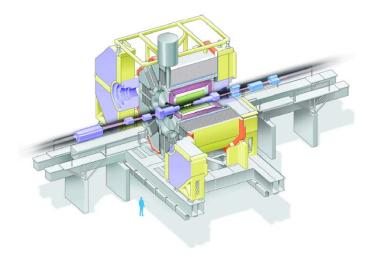
On behalf of the Belle Collaboration

International Workshop on e+e- collisions from Phi to Psi


October 13-16, 2009 Beijing, CHINA

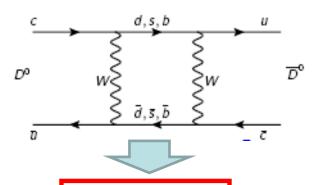
Outline

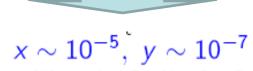
- DO mixing and CPV
 - ✓ Introduction
 - √ DO->K+PI-
 - ✓ DO->K+K-/PI+PI-
 - $\sqrt{}$ D0->Phi(1020)Ks (in D0->KsK+K-)
 - √ DO->Ks pi+pi-
- > Other charm decays
 - √ D0->|+|-
 - \checkmark D(s)->Ksh+
 - ✓ Ds->K+K+PI-
- Conclusions


KEKB and Belle

the largest integrated luminosity in the world

Physics: $e^+e^- \rightarrow \Upsilon(4S) \rightarrow bb$ Reaction cross section: $\sigma(bb) = 1.1 \text{ nb},$ $\sigma(cc) = 1.3 \text{ nb}$

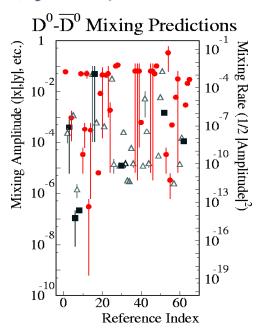

Beside B mesons also largest sample of charm hadrons


DO mixing-Introduction

Standard Model predictions for x and y

GIM &CKM suppression

Burdman, Shipsey, Ann. Rev. Nucl. Part. Sci. 53,431


 $x, y \sim \sin^2 \theta_C \times [SU(3) \text{ breaking}]^2 \sim 1\%$

PRD 65, 054034(2002) (Falk, Grossman, Ligeti & Petrov) PRD 69, 114021(2004) (Falk, Grossman, Ligeti & Petrov)

SU(3) flavor-symmetry breaking and long distance effects may raise both parameters x and y, Difficult to calculate it.

New physics can enhance D0 mixing x and y.

CPV of charm decays

CPV of charm decays in the SM is strongly suppressed by CKM, negligible.

SM predictions for direct CPV in SCS decays are at most of the order of 10^{-3}

Observation of large O(1%) CPV in charm-decays would be a sign of new physics, similar as other FCNC(Flavor Changing Neutral Current) processes.

Classification of CP-violating effects:

$$A_{\text{CP}} = \frac{\Gamma(D \to f) - \Gamma(\overline{D} \to \overline{f})}{\Gamma(D \to f) + \Gamma(\overline{D} \to \overline{f})} = a_f^d + a_f^m + a_f^i$$

ad: CP violation in decay

$$\hookrightarrow \left| \frac{A_f}{\overline{A_f}} \right| \equiv 1 + \frac{A_D}{2} \left(A_D \neq 0 \right)$$

am: CP violation in mixing

$$\hookrightarrow \left| \frac{q}{p} \right| \equiv 1 + \frac{A_M}{2} \quad (A_M \neq 0)$$

$$\mathbf{a_f^i}$$
: *CP* violation in interference $(f = \overline{f}) \rightarrow \phi = arg\left(\frac{q}{p}\frac{\overline{A}_f}{A_f}\right) \, (\phi \neq 0)$

DO mixing Formulae

The time evolution of the System is described:

$$i \frac{\partial}{\partial t} \left(\begin{array}{c} D^0(t) \\ \overline{D}^0(t) \end{array} \right) = \left(\mathbf{M} - \frac{i}{2} \mathbf{\Gamma} \right) \left(\begin{array}{c} D^0(t) \\ \overline{D}^0(t) \end{array} \right)$$
 Mixing occurs when there is a non-zero mass difference

as mass eigenstates D_1 , D_2

$$|D_1\rangle = p|D^0\rangle + q|\overline{D}^0\rangle |D_2\rangle = p|D^0\rangle - q|\overline{D}^0\rangle$$

where $|q|^2 + |p|^2 = 1$ and

$$\left(\frac{q}{p}\right)^2 = \frac{M_{12}^* - \frac{i}{2}\Gamma_{12}^*}{M_{12} - \frac{i}{2}\Gamma_{12}}$$

Eigenstates D_1, D_2 have masses M_1 , M_2 and widths Γ_1, Γ_2

non-zero mass difference

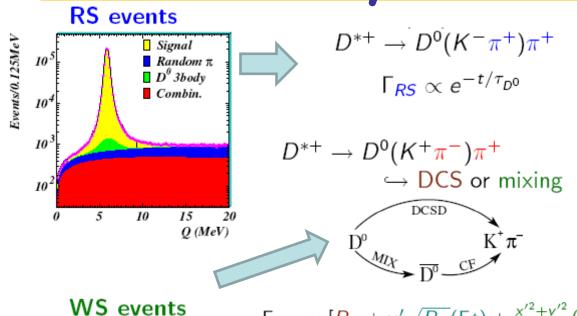
$$\Delta M = M_1 - M_2$$

or lifetime difference

$$\Delta\Gamma = \Gamma_1 - \Gamma_2$$

For convenience define quantities

x and y:
$$x = \frac{\Delta M}{\Gamma}$$
, $y = \frac{\Delta \Gamma}{2\Gamma}$


where
$$\Gamma = \frac{\Gamma_1 + \Gamma_2}{2}$$

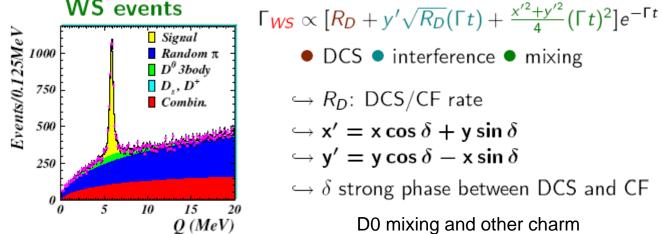
time evolution of flavor eigenstate

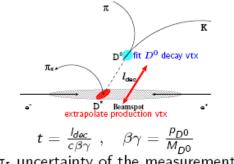
$$| \underline{D^0(t)} \rangle = \left[| \underline{D^0} \rangle cosh \left(\frac{ix+y}{2} t \right) + \frac{q}{p} | \bar{\underline{D}^0} \rangle sinh \left(\frac{ix+y}{2} t \right) \right] \times e^{-\frac{1}{2} (1 + \frac{im}{\Gamma}) t}$$

DO mixing in DO WS hadronic decays: DO->K+PI-

decays at belle

Flavor tagging

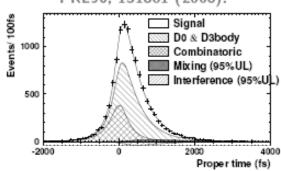

require $D^{*+} o D^0 \pi^+$


- \hookrightarrow flavor tagging with π 's charge

$$Q = M_{D^*} - M_{D^0} - M_{\pi} +$$

Proper decay time

Vertexing with beam point constraint



 σ_t uncertainty of the measurement

DO mixing in DO WS hadronic decays: DO->K+PI-

Belle [400 fb⁻¹]

PRL96, 151801 (2006).

CPV	is	not	observed
-----	----	-----	----------

Fit separately

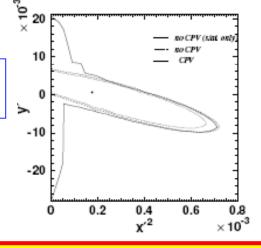
	s/	s.r	
Fit case	Parameter	Fit result	95% C.L. interval
No CPV	$R_D(\times 10^{-3})$	3.64 ± 0.17	(3.3,4.0)
	$x'^{2}(\times 10^{-3})$	$0.18^{+0.21}_{-0.23}$	< 0.72
	$y'(\times 10^{-2})$	$0.06^{+0.40}_{-0.39}$	(-0.99, 0.68)
	$R_M(\times 10^{-3})$	-	$(0.63 \times 10^{-5}, 0.40)$
CPV	$x'^{2}(\times 10^{-3})$	-	< 0.72
	$y'(\times 10^{-2})$	-	(-2.8,2.1)
	$R_M(\times 10^{-3})$	-	< 0.40
	A_D	0.023 ± 0.047	(-0.076, 0.107)
	A_M	0.67 ± 1.20	(-0.995,1.0)
	$ \phi (^{\circ})$	$9.4(84.5) \pm 25.3$	No limits
No mixing	R_D	$3.77 \pm 0.08 ({ m sta})$	at.) ± 0.05 (syst.)
	15		

Belle [400 fb⁻¹]

PRL96, 151801 (2006).

$$A_D = (23 \pm 47) \times 10^{-3}$$

 $A_M = 0.67 \pm 1.2$


$$(R_D^+, x'^{+2}, y'^+)_{D^0} \iff (R_D^-, x'^{-2}, y'^-)_{\overline{D}^0}$$

CPV in decay
$$\Rightarrow$$
 $A_D = \frac{R_D^+ - R_D^-}{R_D^+ + R_D^-}$; R_D (DCS/CF rate)

CPV in mixing
$$\Rightarrow A_M = \frac{R_M^+ - R_M^-}{R_M^+ + R_M^-}$$
; $R_M = \frac{x^2 + y^2}{2}$ (mixing rate)

$$R_M = \frac{x^2 + y^2}{2}$$
 (mixing rate)

D0 mixing and other charm decays at belle

No-mixing point (0,0) is 3.9%, significance: 2

D0 mixing in D0->K+K-, PI+PI-Decays

Measurement of lifetime difference between $D^0 \to K^-\pi^+$ (CP-mixed) and

$$D^0 o K^+ K^-, \ \pi^+ \pi^- \ (CP\text{-even}) \ \text{decays}$$
 $\hookrightarrow \Gamma(D^0, \overline{D}{}^0 \to K^{-,+} \pi^{+,-}) \ \propto \ e^{-t/\tau_{D^0}}$
 $\hookrightarrow \Gamma(D^0, \overline{D}{}^0 \to K^+ K^-, \ \pi^+ \pi^-) \ \propto \ e^{-(1+y_{CP})t/\tau_{D^0}}$

$$\mathbf{y}_{\mathsf{CP}} \equiv \frac{\tau_{\mathsf{K}^{\mp},\pi^{\pm}}}{\tau_{\mathsf{K}^{+}\mathsf{K}^{-},\pi^{+}\pi^{-}}} - \mathbf{1} = \frac{1}{2} \left(\left| \frac{\mathsf{q}}{\mathsf{p}} \right| + \left| \frac{\mathsf{p}}{\mathsf{q}} \right| \right) \mathsf{y} \cos \phi - \frac{1}{2} \left(\left| \frac{\mathsf{q}}{\mathsf{p}} \right| - \left| \frac{\mathsf{p}}{\mathsf{q}} \right| \right) \mathsf{x} \sin \phi$$
In limit of no CPV $\mathbf{y}_{\mathsf{CP}} = \mathbf{y}$

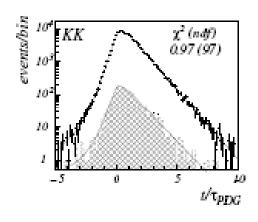
They all have the high signal purity (>90%)

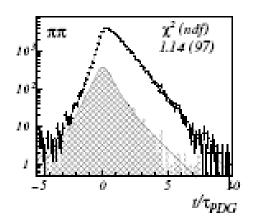
CP Violation

$$\textbf{A}_{\Gamma} = \tfrac{\tau(\overline{D}^0 \to f_{CP}) - \tau(D^0 \to f_{CP})}{\tau(\overline{D}^0 \to f_{CP}) + \tau(D^0 \to f_{CP})} = \tfrac{1}{2} \left(\left| \tfrac{q}{p} \right| - \left| \tfrac{p}{q} \right| \right) y \cos \phi - \tfrac{1}{2} \left(\left| \tfrac{q}{p} \right| + \left| \tfrac{p}{q} \right| \right) x \sin \phi$$

D0 mixing in D0->K+K-, PI+PI-Decays

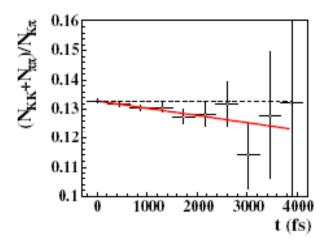
Fit to the proper decay time distribution


$$\frac{dN}{dt} \propto \int e^{-t'/\tau} \cdot R(t - t') dt' + B(t)$$


 $R(t-t') = \sum_{i}^{N} f_i \sum_{k=1}^{3} w_k G(t-t', \sigma_{ik}, t_0)$

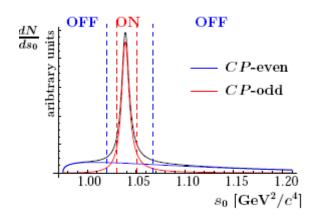
significance: 3.2σ , the first evidence

$$\mathsf{y_{CP}} = (1.31 \pm 0.32 \pm 0.25)\%$$


PRL98, 211803 (2007)

CPV is not observed

$$A_{\Gamma} = (0.01 \pm 0.30 \pm 0.15)\%$$



D0 mixing and other charm decays at belle

DO mixing in DO->KsPhi decays

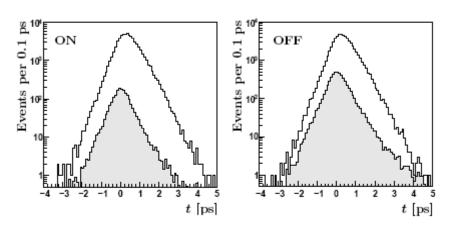
arXiv:0905.4185 (PRD accepted) [673 fb⁻¹]

Measurement of lifetime difference between *CP*-even and *CP*-odd eigenstates

$$\sqrt{s_0} = m_{K^+K^-}$$
 dependent CP mixture
 \hookrightarrow ON region: mainly *CP*-odd $(\phi(1020))$
 \hookrightarrow OFF region: mainly *CP*-even $(a_0(980)^0)$

$$\frac{d^2N(s_0,t)}{ds_0dt} \propto a_1(s_0)e^{-(1+y_{CP})t/\tau_{D^0}} + a_2(s_0)e^{-(1-y_{CP})t/\tau_{D^0}}$$

Effective lifetimes in ON and OFF regions


$$\tau_{\text{ON,OFF}} = [1 + (1 - 2f_{\text{ON,OFF}})y_{CP}]\tau_{D^0}$$

$$\tau_{\text{ON,OFF}} = [1 + (1 - 2f_{\text{ON,OFF}})y_{CP}]\tau_{D^0} \qquad \qquad y_{CP} = \frac{1}{f_{\text{ON}} - f_{\text{OFF}}} \left(\frac{\tau_{\text{OFF}} - \tau_{\text{ON}}}{\tau_{\text{OFF}} + \tau_{\text{ON}}}\right)$$

 f_{ON} , f_{OFF} are CP-even fractions in ON and OFF regions

Topologically equal events in ON and OFF regions \rightarrow reduced effects of resolution function.

D0 mixing in D0->KsPhi decays

Untagged sample used to increase the statistics

Region	ON	OFF
Signal $[imes 10^3]$	72	62
Purit	97%	91%

Background estimated from sidebands in $(m_{K^0_SK^+K^-}$, $m_{K^0_S})$ plane

 f_{ON} , f_{OFF} from fit to $m_{K^+K^-}$ using 8-resonance Dalitz model

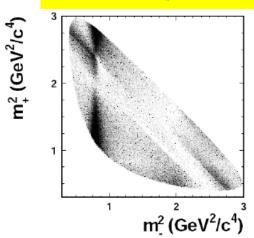
 $au_{
m ON}, \; au_{
m OFF}$ determined from mean proper decay times of all events and background events

$$\hookrightarrow \tau_{\mathrm{ON,OFF}} + t_0 = \frac{\langle t \rangle_{\mathrm{ON,OFF}} - (1 - p_{\mathrm{ON,OFF}}) \langle t \rangle_b^{\mathrm{ON,OFF}}}{p_{\mathrm{ON,OFF}}}$$

$$y_{CP} = +(0.11 \pm 0.61(stat.) \pm 0.52(syst.))\%$$

it is consistent with above results(ycp)

DO mixing in DO->KsPI+PIdecays


BY measuring the time evolution of Dalitz plot, x, y can be determined separately,

$$\langle s | H | D^{0}(t) \rangle = e_{1}(t)A_{1} + e_{2}(t)A_{2} = M$$

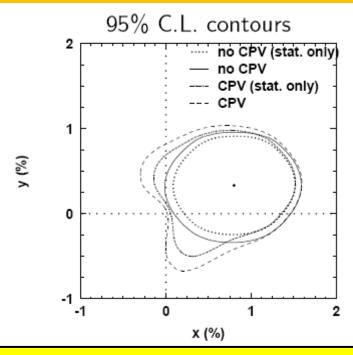
 $\langle \overline{s} | H | \overline{D^{0}(t)} \rangle = e_{1}(t)\overline{A_{1}} + e_{2}(t)\overline{A_{2}} = \overline{M}$

$$D^0: A(m_-^2, m_+^2) = \sum_r a_r e^{i\phi_r} A_r(m_-^2, m_+^2) + a_{nr} e^{\phi_n r}$$

$$\overline{D}{}^0$$
: $\bar{\mathcal{A}}(m_-^2,m_+^2) = \sum_r \bar{a}_r e^{i\bar{\phi}_r} \bar{\mathcal{A}}_r(m_-^2,m_+^2) + a_{nr} e^{\phi_n r}$

 $D^0 \to K_s^{0} \pi^+ \pi^-$

PRL99, 131803 (2007). $[540 \text{ fb}^{-1}]$


Therefore, the decay rate of D0 is a function of time, it includes \times and y, where t is in unit of D0 lifetime.

$$|M|^{2} = \{|A_{1}|^{2} e^{-yt} + |A_{2}|^{2} e^{yt} + 2R[A_{1}A_{2}^{*}]\cos(xt) + 2I[A_{1}A_{2}^{*}]\sin(xt)\}e^{-t},$$

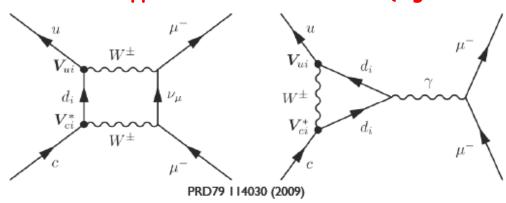
$$\left|\overline{M}\right|^{2} = \left\{\left|\overline{A_{1}}\right|^{2} e^{-yt} + \left|\overline{A_{2}}\right|^{2} e^{yt} + 2R\left[\overline{A_{1}}\overline{A_{2}^{*}}\right]\cos(xt) + 2I\left[\overline{A_{1}}\overline{A_{2}^{*}}\right]\sin(xt)\right\} e^{-t}$$

D0 mixing and other charm decays at belle

DO mixing in DO->KsPI+PIdecays

Significance: 2.2σ for x, current best x value

CPV is not observed


Conserved *CP* symmetry $(|q/p| = 1 \& \phi = 0)$

$$x = (0.80 \pm 0.29^{+0.13}_{-0.16})\%$$

 $y = (0.33 \pm 0.24^{+0.10}_{-0.14})\%$

CPV allowed ($|q/p| \& \phi$ free parameters of the fit)

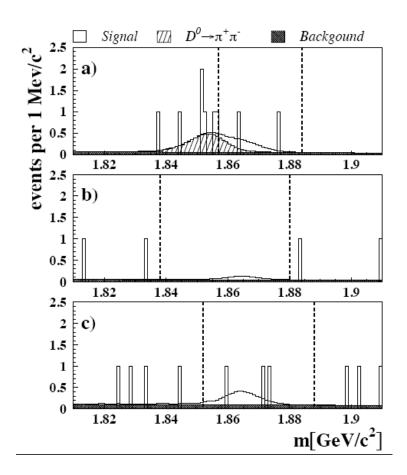
$$|\mathbf{q/p}| = 0.86 \pm 0.30 \pm 0.09$$

 $\phi = -0.24 \pm 0.30 \pm 0.09$

Motivation: FCNC does not appear in SM on tree level (higher order below allowed)

Certain new physics scenarios allows this process: new particle replacing W boson

Model	$\mathcal{B}_{D^0 o\mu^+\mu^-}$	
Experiment	$\leq 4.3 \times 10^{-7}$ (CDF preliminary)	
Standard Model (SD)	$\sim 10^{-18}$	
Standard Model (LD)	$\sim \text{several} \times 10^{-13}$	
Q = +2/3 Vector-like Singlet	4.3×10^{-11}	
Q=-1/3 Vector-like Singlet	$1 \times 10^{-11} \ (m_S/500 \ { m GeV})^2$	
Q=-1/3 Fourth Family	$1 \times 10^{-11} \ (m_S/500 \ { m GeV})^2$	
Z' Standard Model (LD)	$2.4 \times 10^{-12}/(M_{Z'}({ m TeV}))^2$	
Family Symmetry	0.7×10^{-18}	
RPV-SUSY	$4.8 \times 10^{-9} \ (300 \ { m GeV}/m_{\tilde{d}_k})^2$	


D0 mixing and other charm decays at belle

Except Family Symmetry All NP exceed the SM prediction

Largest data: 659 fb-1

Belle is most sensitive to RPV-SUSY scenario

Estimation of background

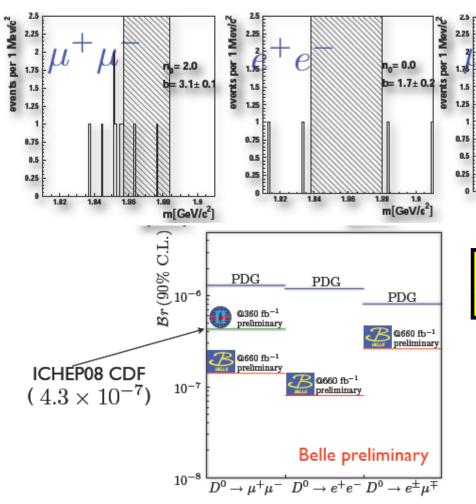
Combinatorial background

2 D estimation with $\,a(1-bm)/\sqrt{q}$

The ratio of combinatorial background in the signal to the number in the side band

channel	p[%]
$\mu^+\mu^-$	1.08
e^+e^-	1.49
$e^{\pm}\mu^{\mp}$	1.43

Reflection background from


$$D^0 \to \pi^+\pi^-$$

peak shifted in ${\mathcal M}$ but on peak in q $\pi^+ \to \ell^+$ mis-id measured with $D^0 \to K^- \pi^+$

(Number of reflection in the signal window)

channel	N_{refl}^{DATA}	
$\mu^+\mu^-$	1.81 ± 0.002	
e^+e^-	0.0372 ± 0.0002	
$e^{\pm}\mu^{\mp}$	0.1935 ± 0.0006	

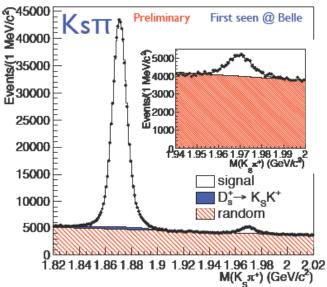
Event counting at the signal window

channel events bg

$$\mu^{+}\mu^{-}$$
 2 3.1±0.1
 $e^{+}e^{-}$ 0 1.7±0.2
 $e^{\pm}\mu^{\mp}$ 3 2.6±0.2

New, best upper limits for leptonic decays of DO


n₀= 3.0 b= 2.6± 0.2


.88 1.9 m[GeV/c²]

90% CL upper limit Belle preliminary

$$\mathcal{B}(D^0 \to \mu^+ \mu^-) < 1.4 \times 10^{-7}$$

 $\mathcal{B}(D^0 \to e^+ e^-) < 7.9 \times 10^{-8}$
 $\mathcal{B}(D^0 \to \mu^{\pm} e^{\mp}) < 2.6 \times 10^{-7}$

Study of $D_{(s)}^+->Ksh+$

look for ratios of CS to CF $D_{(s)}^+$ decays

Preliminary fit yields

Decay modes	Yields
$D^+ \to K_S K^+$	100855 ± 561
$D_s^+ \to K_S K^+$	204093 ± 768
$D^+ \to K_S \pi^+$	566105 ± 1159
$D_s^+ o K_S \pi^+$	16817 ± 448

new best measurements

$$\mathcal{B}(D^+ \to K_S K^+)/\mathcal{B}(D^+ \to K_S \pi^+) = 0.190 \pm 0.001 \pm 0.002$$

$$\mathcal{B}(D_s^+ \to K_S \pi^+) / \mathcal{B}(D_s^+ \to K_S K^+) = 0.077 \pm 0.002 \pm 0.002$$

Mode	PDG2008	CLEO 2009 (*)
$\mathcal{B}(D^+ \to K_S K^+)/\mathcal{B}(D^+ \to K_S \pi^+)$	0.189±0.016±0.007	0.199±0.010
$\mathcal{B}(D_s^+ \to K_S \pi^+)/\mathcal{B}(D_s^+ \to K_S K^+)$	0.082±0.009±0.002	0.085±0.009

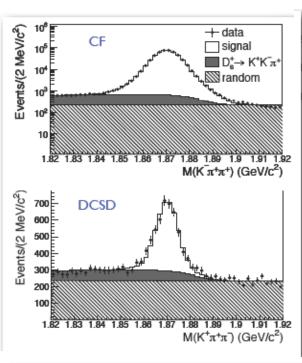
D0 mixing and other charm decays at belle

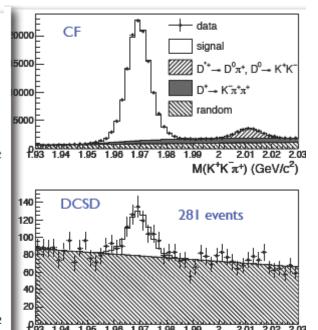
Observation of Ds⁺->K+K+PI-

Motivation:

- 1) not observed yet;
- 2) one can look at the double ratio to test SU(3) flavor symmetry; Lipkin, NPB 115 117 (2003)

$$\frac{\mathcal{B}(D_s^+ \to K^+ K^+ \pi^-)}{\mathcal{B}(D_s^+ \to K^+ K^- \pi^+)} \frac{\mathcal{B}(D^+ \to K^+ \pi^+ \pi^-)}{\mathcal{B}(D^+ \to K^- \pi^+ \pi^+)} = \tan^8 \theta_C$$




Differences in the phase space cancel in the ratios

SU(3) breaking effects due to resonant intermediate states in the 3-body violates the equation above

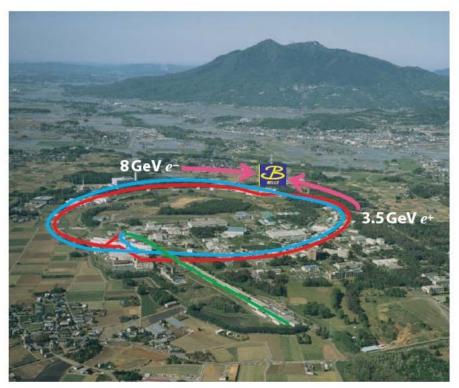
Observation of Ds+->K+K+PI-

PRL 102 221802 (2009)
$$\frac{\mathcal{B}(D_s^+ \to K^+ K^+ \pi^-)}{\mathcal{B}(D_s^+ \to K^+ K^- \pi^+)} \frac{\mathcal{B}(D^+ \to K^+ \pi^+ \pi^-)}{\mathcal{B}(D^+ \to K^- \pi^+ \pi^+)} = \underline{(1.57 \pm 0.21)} \cdot \tan^8 \theta_C$$

double ratio is OK

$$D_s^+ o K^+ K^+ \pi^-$$

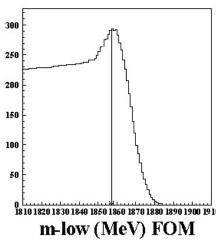
First observation of this decay 9.1 standard deviation

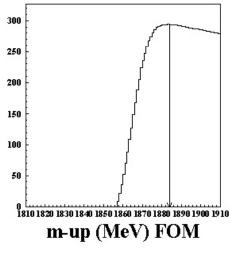

Branching fraction	Belle	World average [3]
$\mathcal{B}(D^+ \to K^+ \pi^+ \pi^-)$	$(5.2 \pm 0.2 \pm 0.1) \times 10^{-4}$	$(6.2 \pm 0.7) \times 10^{-4}$
$\mathcal{B}(D_s^+ \to K^+ K^+ \pi^-)$	$(1.3 \pm 0.2 \pm 0.1) \times 10^{-4}$	$(2.9 \pm 1.1) \times 10^{-4}$

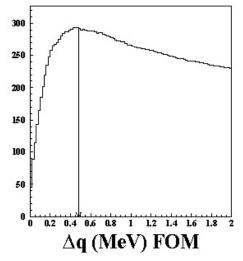
 $M(K^{+}K^{+}\pi^{-})$ (GeV/c²)

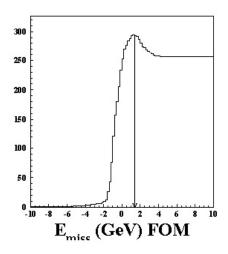
Conclusions

- ✓ It seems that there is a clear evidence for no-zero y (D0 mixing parameter)
- ✓ The measurement of x is still a challenge
- ✓ No evidence of CP violation is observed
- ✓ The best limits are achieved for leptonic decays of D0 (preliminary)
- The most precise branch ratios of $D_{(s)}^+$ ->Ksh+ are obtained (preliminary)
- ✓ The first Observation of DCSD in Ds⁺->K+K+PI-.


The end thanks a lot




KEKB consists of a linear injector and two 3km-circumference storage rings.


Backup

Selection $\begin{cases} \text{Particle identification, soft pion tagging for D meson} \\ \text{vertex fit for D(*) meson,} \quad q \equiv m_{D^*+} - m_{D^0} - m_{\pi_s} < 0.02 \,\, \mathrm{GeV}/c^2 \\ \text{D meson momentum cut:} \quad p_{D^{*+}} > 2.5 \,\, \mathrm{GeV}/c \end{cases}$

D0 mixing and other charm decays at belle