Can the estimate of g-2 be improved? A HLS based approach

M. Benayoun LPNHE Paris 6/7

M. Benayoun, VMD & g-2 estimates

OUTLINE

- Model & Method
- > Isospin Breaking : dynamical (ρ, ω, ϕ) mixing
- Absolute scale of spectra
- Processes to fit
- ≻Global fit
- >ππ contribution to g-2
- Conclusions and outlook

HLS : A VMD Model

The Hidden Local Symmetry model is :

M. Harada & K. Yamawaki Phys. Rep. 381 (2003) 1

A unified VMD framework including $e^+e^- \rightarrow \pi \pi / Kkbar / \pi \gamma / \eta \gamma / \pi \pi \pi \& \tau \rightarrow \pi \pi v_{\tau}$ & PVy couplings & $\eta/\eta' \rightarrow \gamma \pi \pi/\gamma \gamma$ & \succ Few parameters : e, f_m, V_{ud}, V_{us}, a (\approx 2), g ,... Still not an operating model : needs breaking M.Bando et al. Phys. Rep. 164 (1988) 217 breaking SU(3)/U(3)

breaking Isospin Symmetry

A. Bramon et al. PL B 345 (1995) 263

M. Benayoun et al. EPJ C 55 (2008) 139

HLS : A VMD Model

• The Hidden Local Symmetry model is :

A unified VMD framework including $e^+e^- \rightarrow \pi \pi / Kkbar / \pi \gamma / \eta \gamma / \pi \pi \pi \& \tau \rightarrow \pi \pi v_{\tau}$ & PVy couplings & $\eta/\eta' \rightarrow \gamma \pi \pi/\gamma \gamma$ & Few parameters : e, f_{π} , V_{ud} , V_{us} , a (\approx 2), g ,... Still not an operating model : needs breaking breaking SU(3)/U(3) $z_{\Delta}, z_{\nu}, z_{\tau}, (x/\theta)$ breaking Isospin Symmetry : s-dependent (8 par.)

The Largest Possible Data Set

- **Over**constrained parametrization provided by:
- $\geq \underline{e^+e^- \rightarrow \pi \pi \& 12 PVy \text{ decays } \& \eta/\eta' \rightarrow yy + }$
- > $\pi^0 V \gamma \& \eta V \gamma$ couplings $\longrightarrow e^+e^- \rightarrow (\pi^0/\eta) \gamma [/πππ]$
- > ++ $\tau \rightarrow \pi \pi v_{\tau} \rightarrow$ only a constraint \rightarrow should improve param. accuracy & solve the e⁺e⁻/ τ puzzle
- Present Limits :
 M. Benayoun *et al.* EPJ C 55 (2008) 139
- \checkmark the $\approx \phi$ mass region (1.05 GeV)
- No scalars mesons, no ρ', no ρ''
- > Analysis Method : Global (over)constrained fit

Analysis Method

- A Global Fit to the largest possible data set
 Why ?
- Check VMD constraints well accepted by DATA? (correct lineshapes & yields with Proba. OK)
- ➢ IF YES ↔ theoretical correlations fulfilled by DATA
 → improved parameters
- ➢ form factors & fit parameters values & errors & covariance matrix → contributions to g-2
- Procedure fully blind to g-2

Isospin Breaking : Vector Field Mixing

- tree level:: ideal vector fields ≡ mass *eigenstates*
- At one loop, the HLS Lagrangian piece

$$\left(\boldsymbol{\rho}_{I}+\boldsymbol{\omega}_{I}-\sqrt{2}\,\boldsymbol{z}_{V}\,\boldsymbol{\varphi}_{I}\right)\boldsymbol{K}^{-}\boldsymbol{\partial}\,\boldsymbol{K}^{+}+\left(\boldsymbol{\rho}_{I}-\boldsymbol{\omega}_{I}+\sqrt{2}\,\boldsymbol{z}_{V}\,\boldsymbol{\varphi}_{I}\right)\boldsymbol{K}^{0}\boldsymbol{\partial}\,\boldsymbol{\bar{K}}^{0}$$

induces transitions among ideal fields ideal fields **≢ mass** eigenstates

isospin symmetry breaking : $m_{K^{\pm}} \neq m_{K^{0}}$

Transitions at one loop

The Mass Matrix Eigen System

$$M^{2}(s) = \begin{pmatrix} m^{2} + \Pi_{\pi\pi}(s) + \varepsilon_{2}(s) & \varepsilon_{1}(s) & -\mu\varepsilon_{1}(s) \\ \varepsilon_{1}(s) & m^{2} + \varepsilon_{2}(s) & -\mu\varepsilon_{2}(s) \\ -\mu\varepsilon_{1}(s) & -\mu\varepsilon_{2}(s) & z_{V}m^{2} + \mu^{2}\varepsilon_{2}(s) \end{pmatrix}$$

As :
$$(m^{2}, \Pi_{\pi\pi}(s)) \gg \varepsilon_{2}(s) \gg \varepsilon_{1}(s)$$

Solve perturbatively

M. Benayoun, VMD & g-2 estimates

 $M^{2}(s) = M_{0}^{2}(s) + \delta M^{2}(s)$

From Ideal To Physical Fields

$$\begin{pmatrix} \rho_{I}^{0} \\ \omega_{I} \\ \varphi_{I} \end{pmatrix} = \begin{bmatrix} 1 & -\alpha & \beta \\ \alpha & 1 & \gamma \\ -\beta & -\gamma & 1 \end{bmatrix} \begin{pmatrix} \rho^{0} \\ \omega \\ \varphi \end{pmatrix} \xrightarrow{R(s+i\varepsilon)\tilde{R}(s+i\varepsilon) = 1} \qquad Physical Fields$$

$$\begin{bmatrix} \alpha(s) \\ \beta(s) \\ \gamma(s) \end{bmatrix} = \begin{bmatrix} \frac{\varepsilon_{1}(s)}{\Pi_{\pi\pi}^{2}(s) - \varepsilon_{2}(s)} & \frac{1}{\sqrt{2} z_{V} \varepsilon_{1}(s)} \\ \frac{\sqrt{2} z_{V} \varepsilon_{1}(s)}{(1 - z_{V}) m^{2} + \Pi_{\pi\pi}^{\rho}(s) - 2 z_{V}^{2} \varepsilon_{2}(s)} \\ \frac{\sqrt{2} z_{V} \varepsilon_{2}(s)}{(1 - z_{V}) m^{2} + (1 - 2 z_{V}^{2}) \varepsilon_{2}(s)} \end{bmatrix} + O(\varepsilon_{i}^{2})$$

V π π Couplings: I=1 part of ω and ϕ

*At leading order : **ρ term unchanged (I=1 part)** *small **s-dependent ω and φ** (I=1 part)

$\gamma - V$ Couplings: I=0 part of ρ^0

In terms of Ideal Fields

$$-e \operatorname{agf}_{\pi}^{2} \left[\rho_{I}^{0} + \frac{1}{3} \omega_{I} - \frac{\sqrt{2}}{3} z_{V} \phi_{I} \right]_{\mu} \bullet A^{\mu} \Longrightarrow$$

Becomes $\Rightarrow -e \left[f_{\rho}^{\gamma} \rho^{\circ} + f_{\omega}^{\gamma} \frac{1}{3} \omega - f_{\phi}^{\gamma} \frac{\sqrt{2}}{3} z_{\nu} \phi \right] \bullet A^{\mu}$ With $agf_{\pi}^{2} \Longrightarrow f_{V}^{\gamma} \equiv f_{V}^{\gamma}(s) = agf_{\pi}^{2} \left[1 + O(\varepsilon_{i}(s)) \right] \quad !!!$

ρ couplings to γ/W

(γ/W) V transitions :

Dipion Mass Spectrum : The Latest Account (2007)

Result : <u>Structureless</u> Fit Residuals

Annihilations/Decays Considered

- Non-Anomalous annihilations : $e^+e^- \rightarrow \pi \pi / \int_{\tau}^{0} decays : \tau \rightarrow \pi \pi v_{\tau}$
- Anomalous Processes : $e^+e^- \rightarrow \pi \gamma/\eta\gamma/\pi \pi \pi$ (Anomalous Effective Lagrangian pieces)
- Radiative decays widths $(VP\gamma, \eta/\eta' \rightarrow \pi\pi\gamma)$

A. Bramon *et al*. Phys. Lett. B486 (406) 2000

Non-Anomalous Processes

Anomalous Processes

Absolute Magnitude of Spectra

- Absolute Magnitude of spectra for
 e⁺e⁻ → ππ/πγ/ηγ/πππ & τ→ππν_τ
 essentially determined by g
- Absolute Magnitude of Experimental spectra determined by g AND (Exp) scale uncertainties
- Simultaneous treatment of ALL data may allow to fit g and get/check the (best) scales

(scales constrained by exp. Information)

Global Fit : $e^+e^- \rightarrow \pi^+ \pi^-$ (NSK)

M. Benayoun et al. EPJ C 55 (2008) 139

M. Benayoun, VMD & g-2 estimates

Global Fit : $e^+e^- \rightarrow \pi^+ \pi^-$ (KLOE)

M. Benayoun, VMD & g-2 estimates

Global Fit : $e^+e^- \rightarrow \pi^0 \gamma$ (NSK)

M. Benayoun et al. ArXiv 0907.4047

Global Fit : e⁺e⁻ → ηγ (NSK)

Global Fit : $e^+e^- \rightarrow \pi^+ \pi^- \pi^0$ (NSK)

Global Fit : $\tau \rightarrow \pi^{c} \pi^{0}$ (CLEO/BELLE/ALEPH)

M. Benayoun, VMD & g-2 estimates

SIDE RESULT : <u>Prediction</u> for $\eta/\eta' \rightarrow \pi\pi \gamma$

Contribution of $\pi\pi$ to g-2 (e⁺e⁻ $\rightarrow\pi^+\pi^-$)

Integrated from 0.630 to 0.958 GeV/c (x10⁻¹⁰)

	Data Set	Exp. Value	Reconstructed	χ²/dof	Prob.		
	CMD2 (1995)	362.1 ± 2.4 ± 2.2	362.9 (+3.1/-4.5)_exp	41/42	51%		
	CMD2 (1998)	361.5 ± 1.7 ± 2.9	362.2 ± 2.1_exp	38/38	49 %		
	SND (1998)	361.0± 1.2 ± 4.7	361.0 ± 2.1_exp	26/44	99%		
	« new » NSK	360.24 ±3.02_exp	361.7 ± 1.3_exp	126/126	48%		
	« new »NSK+KLOE	358.51±2.41_exp	362.1 ± 1.1_exp	255/188			
e⁺e 	$e^+e^- \rightarrow \pi^+\pi^- \& VP\gamma \& P\gamma\gamma$ Λ M. Davier <i>et al</i> arXiv 0906.5443 (2009)						
Ē	All FSR Corrected M. Benayoun, VMD & g-2 estimates						

Contribution of $\pi\pi$ to g-2

Integrated from 0.630 to 0.958 GeV/c (x10⁻¹⁰)

Data Set	Exp. Value	Reconstructed	χ²/dof	Probability
CMD2 (1995)	362.1 ± 2.4 ± 2.2	362.9 (+3.1/-4.5)	41/42	51%
CMD2 (1998)	361.5 ± 1.7 ± 2.9	362.2 ± 2.1	38/38	49 %
SND (1998)	361.0± 1.2 ± 4.7	361.0 ± 2.1	26/44	99%
Combined NSK**	360.24 ± 3.02	361.7 ± 1.3	126/126	48%
++ old timelike	A 1	361.1 ± 1.3	178/208	94%
++ (π ⁰ /η) γ		361.2 ± 1.3	372/468	>99%
++(π ⁺ π ⁻ π ⁰)		361.2 ± 1.3	523/597	>99%

ππ: FSR Corrected

M. Davier et al arXiv 0906.5443 (2009)

Data Set	Exp. Value	Reconstructed	χ²/dof	Probability
« new » NSK **	360.24 ± 3.02	361.7 ± 1.3	126/126	48%
++ old timelike		361.1 ± 1.3	178/208	94%
++ (πº/η) γ		361.2 ± 1.3	372/468	> 99%
++(π ⁺ π ⁻ π ⁰)		361.2 ± 1.3	523/597	> 99%

→ Reconstructed value consistent with exp. average
 → Global fit provides an improved error
 → Probability provided by the (underlying) fit
 → NO Influence of poor resolution data
 → Stable central values (~0.5 σ)

Data Set	Exp. Value	Reconstructed	χ²/dof	Probability
Combined NSK **	360.24 ± 3.02	361.7 ± 1.3	126/126	48%
++ old timelike		361.1 ± 1.3	178/208	94%
++ (π ⁰ /η) γ		361.2 ± 1.3	372/468	> 99%
++(π ⁺ π ⁻ π ⁰)		361.2 ± 1.3	523/597	> 99%

→ Reconstructed value consistent with exp. average
 → Global fit provides an improved error

Probability provided by the (underlying) fit
 NO Influence of poor resolution data
 Stable central values (~0.5 σ)

Data Set	Exp. Value	Reconstructed	χ²/dof	Probability
Combined NSK **	360.24 ± 3.02	361.7 ± 1.3	126/126	48%
++ old timelike		361 1 ± 1.3	178/208	94%
++ (πº/η) γ		361.2 ± 1.3	372/468	> 99%
++(π ⁺ π ⁻ π ⁰)		361.2 ± 1.3	523/597	> 99%

→ Reconstructed value consistent with exp. average
 → Global fit provides an improved error

Probability provided by the (underlying) fit
 NO Influence of poor resolution data

→ <u>Nevertheless</u> stable central values (~0.5 σ) Stat +stst.

Data Set	Exp. Value	Reconstructed	χ²/dof	Probability
Combined NSK **	360.24 ± 3.02	361.7 ± 1.3	126/126	48%
++ old timelike		361.1 ± 1.3	178/208	94%
++ (πº/η) γ		361.2 ± 1.3	372/468	> 99%
++(π ⁺ π ⁻ π ⁰)		361.2 ± 1.3	523/597	> 99%

Reconstructed value consistent with exp. average
 Global fit provides an improved error
 Probability provided by the (underlying) fit
 NO Influence of poor resolution data
 Nevertheless stable central values (~0.5 σ)

Contribution of $\pi\pi$ to g-2 (II)

Data Set	Exp. Value	Reconstructed	χ²/dof	Probability
Combined NSK **	360.24 ± 3.02	361.7 ± 1.3	126/126	48%
++ old timelike		361.1 ± 1.3	178/208	94%
++ (π ⁰ /η) γ		361 7. ± 1.3	372/468	> 99%
++(π ⁺ π ⁻ π ⁰)		361.2 ± <u>1.3</u>	523/597	> 99%

 \rightarrow Reconstructed value consistent with exp. average Global fit provides an improved error Probability provided by the (underlying) fit \rightarrow NO Influence of poor resolution data \rightarrow Nevertheless Stable central values (~0.5 σ) **ππ: FSR Corrected**

Contribution of $\pi\pi$ to g-2 (II)

Data Set	Exp. Value	Reconstructed	χ²/dof	Probability
Combined NSK **	360.24 ± 3.02	361.7 ± 1.3	126/126	48%
++ old timelike		361.1 ± 1.3	178/208	94%
++ (πº/η) γ		361.2 ± 1.3	372/468	3 99%
++(π ⁺ π ⁻ π ⁰)		361.2 ± 1.3	523/597	> 99%

 \rightarrow Reconstructed value consistent with exp. average \rightarrow Global fit provides an improved error Probability provided by the (underlying) fit \rightarrow NO Influence of poor resolution data \rightarrow Nevertheless stable central values (~0.5 σ) **ππ: FSR Corrected**

Data Set	Exp. Value	Reconstructed	χ²/dof	Probability
Combined NSK **	360.24 ± 3.02	361.7 ± 1.3	126/126	48%
++ old timelike		361.1 ± 1.3	178/208	94%
++ (π ⁰ /η) γ		361.2 ± 1.3	372/468	> 99%
++(π ⁺ π ⁻ π ⁰)		361.2 ± 1.3	523/597	> 99%

→ Reconstructed value consistent with exp. average
 → Global fit provides an improved error
 → Probability provided by the (underlying) fit
 → NO influence of poor resolution data
 → Nevertheless stable central values (~0.5 σ)

Adding τ data to e⁺e⁻ Xsections

L.O. Contribution of ππ to g-2 Integrated from 0.630 to 0.958 GeV/c (x10 ⁻¹⁰)					
FSR Corrected M. Benayoun <i>et al.</i> arXiv 0907.5603					
Data Sets	a _μ from fit solution (x10⁻¹⁰)	χ² /dof	Probability		
All e⁺e⁻ Data (NSK)	361.2 ± 1.3 _{tot}	523/597	99%		
+BELLE + CLEO	$362.1 \pm 1.2_{tot}$	593/646	94 %		
+BELLE + CLEO + KLOE	361.7 ± 1.1 _{tot}	729/709	30%		
+ ALEPH	367.2 ± 1.0 _{tot}	613/634	72%		
+ALEPH + KLOE	366.7 ± 0.9 _{tot}	364/697	4%		
+ ALEPH+ BELLE + CLEO	367.8 ± 1.0 _{tot}	681/683	51%		

NSK($\pi\pi$) +KLOE+BaBar :360.8 ±2.0_{tot}

// BaBar: 365.2 $\pm 2.7_{tot}$

M. Davier *et al.* arXiv 0908.4300

Adding τ data to e⁺e⁻ Xsections

L.O. Contribution of ππ to g-2 Integrated from 0.630 to 0.958 GeV/c (x10 ⁻¹⁰)						
FSR Corrected	FSR Corrected M. Benayoun <i>et al.</i> arXiv 0907.5603					
Data Sets	a_{μ} from fit solution (x10 ⁻¹⁰)	χ²/dof	Probability			
All e⁺e⁻ Data (NSK)	361.2 ± 1.3 _{tot}	523/597	99%			
+BELLE + CLEO	362.1 ± 1.2 _{tot}	593/646	94 %			
+BELLE + CLEO + KLOE	361.7 ± 1.1 _{tot}	729/709	30%			
+ ALEPH	367.2 ± 1.0 _{tot}	613/634	72%			
+ALEPH + KLOE	366.7 ± 0.9 _{tot}	364/697	4%			
+ ALEPH+ BELLE + CLE0 367.8 ± 1.0 _{tot} 681/683 51%						
NSK(ππ) +KLOE+BaBar :360.8 ±2.0 _{tot} // BaBar : 365.2 ±2.7 _{tot}						
	M. Davie	r <i>et al.</i> arXiv 0	908.4300			

Adding τ data to e⁺e⁻ Xsections

L.O. Contribution of ππ to g-2 Integrated from 0.630 to 0.958 GeV/c (x10 ⁻¹⁰)					
FSR Corrected M. Benayoun <i>et al.</i> arXiv 0907.5603					
Data Sets	a_{μ} from fit solution (x10 ⁻¹⁰)	χ²/dof	Probability		
All e⁺e⁻ Data (NSK)	361.2 ± 1.3 _{tot}	523/597	99%		
+BELLE + CLEO	362.1 ± 1.2 _{tot}	593/646	94 %		
+BELLE + CLEO + KLOE	361.7±1.1 _{tot}	729/709	30%		
+ ALEPH	367.2 ± 1.0	613/634	72%		
+ALEPH + KLOE	366.7 ± 0.9 _{tot}	364/697	4%		
+ ALEPH+ BELLE + CLEO	367.8 ± 1.0 _{tot}	681/683	51%		
NSK(ππ) +KLOE+BaBar :360.8 ±2.0 _{tot} // BaBar : 365.2 ±2.7 _{tot}					
	M. Davi	er <i>et al.</i> arXiv 0	908.4300		

Contribution of ππ to g-2 Integrated from 0.630 to 0.958 GeV/c (x10⁻¹⁰)

CMD2 (1995)	O
CMD2 (1998)	O
SND (1998)	O
NSK new timelike	—0—
NSK all timelike	-0
$+\pi^{\circ}/\eta$ γ	-0
$++\pi^{+}\pi^{-}\pi^{0}$	-0
NSK+B+C	-0
NSK+B*+C	-0-
NSK+KLOE	-0-
NSK+KLOE+B+C	-0
NSK+A	-0-
NSK+B+C+A	-0-
NSK+KLOE+A	-0-
5 340 345 350	355 360 365 3 M. Benayoun, VMD $\begin{pmatrix} & +g-2 \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ $

A=ALEPH B=BELLE C=CLEO

Contribution of ππ to g-2 Integrated from 0.630 to 0.958 GeV/c (x10⁻¹⁰)

A=ALEPH B=BELLE C=CLEO

Conclusion and Outlook

Do VMD physics correlations improve g-2? **YES**

- Better systematics in $e^+e^- \rightarrow \pi \gamma/\eta\gamma/\pi \pi \pi$ may improve more the $\pi \pi$ contribution to g-2
- Conversely : $e^+e^- \rightarrow \pi \pi$ may improve $\pi \gamma/\eta\gamma/\pi \pi \pi$
- Understanding the e⁺e⁻ →K Kbar puzzle too! (φ region)
- Extend VMD

VMD :: The HLS Framework

• Hidden Local Symmetry Model (HLS) as a whole

M.Bando, T. Kugo & K. Yamawaki Phys. Rep. 164 (1988) 217 M. Harada & K. Yamawaki Phys. Rep. 381 (2003) 1

M.Benayoun & H.O'Connell PR D 58 (1998) 074006

L_A, L_V, L_{YM} , L_{anomalous}

(π/K form factors, VPPP, γ PPP, VP γ & P $\gamma\gamma$ couplings)

BKY-like flavor U(3)/SU(3) breaking mechanisms

M.Bando, T. Kugo & K. Yamawaki Phys. Rep. 164 (1988) 217

A. Bramon, A. Grau & G. Pancheri PL B 345 (1995) 263

M. Benayoun *et al*. PR D 59 (1999) 114027

G. Morpurgo PR D 42 (1990) 1497

M. Benayoun, L. DelBuono & H. O'Connell EPJ C 17 (2000) 593

M. Benayoun et al. EPJ C 55 (2008) 139

The Hidden Local Symmetry Model : The Non-Anomalous Sector

- Define $\xi_{L/R} = e^{[\mp i P/f_{\pi}]}$ PS field matrix
- Define covariant derivatives $D_{\mu}\xi_{L}$, $D_{\mu}\xi_{R}$
- Then $L/R = D_{\mu}\xi_{L/R}\xi^{\dagger}_{L/R}$ and $L_{A/V} = -\frac{f_{\pi}^2}{\Lambda}Tr[L\mp R]^2$
- The Full HLS Lagrangian : $L_{HLS} = L_A + a L_V + L_{YM}$

Expanded form: M.Benayoun & H.O'Connell PR D 58 (1998) 074006

$$D_{\mu}\xi_{L/R} = \partial_{\mu}\xi_{L/R} - igV_{\mu}\xi_{L/R} + i\xi_{L/R}G_{L/R}$$
Universal Vector Coupling

The Covariant Derivatives

• Covariant derivatives \neq for left- right- ξ fields :

$$D_{\mu}\xi_{L/R} = \partial_{\mu}\xi_{L/R} - igV_{\mu}\xi_{L/R} + i\xi_{L/R}G_{L/R}$$

• With :

$$G_{R} = eQA_{\mu}$$
, $G_{L} = eQA_{\mu} + \frac{g_{2}}{\sqrt{2}} \left(W_{\mu}^{+}T_{+} + W_{\mu}^{-}T_{-} \right)$

 $\rm T_{\pm}$ is CKM matrix reduced to $\rm V_{us}$ and $\rm V_{ud}$ terms

M. Benayoun, VMD & g-2 estimates

Anomalous Annihilations/Decays

- Non-Anomalous annihilations : $e^+e^- \rightarrow \pi \pi / K \overline{K}$ or decays : $\tau \rightarrow \pi \pi v_{\tau}$
- Anomalous Processes : e⁺e⁻ → π γ/ηγ/π π π
 :: Other Effective Lagrangian pieces

$$L_{VVP} = -\frac{N_c g^2}{4\pi^2 f_{\pi}} c_3 \varepsilon^{\mu\nu\alpha\beta} Tr \left[\partial_{\mu} V_{\nu} \partial_{\alpha} V_{\beta} \right] \rightarrow L_{AVP}(g)$$

+ $(1-c_4)L_{AAP}(e^2)$ + $\left[1-\frac{3}{4}(c_1-c_2+c_4)\right]L_{APPP}(e)$

M. Benayoun, VMD & g-2 estimates

Br (τ→ππν_τ)

<mark>Br (τ→ππν_τ)</mark>

BELLE/ALEPH/CLEO

M. Benayoun, VMD & g-2 estimates