Update of g-2 of the muon and $\Delta lpha$

Thomas Teubner

Kaoru Hagiwara, Ruofan Liao, Alan Martin and Daisuke Nomura

I. Recent developments in g-2

- New exclusive data from CMD-2, SND, KLOE, BaBar, inclusive measurements from BES, CLEO.
- 2π : KLOE 2008 analysis (brand new results \rightarrow S Mueller).
- Inclusive vs. sum of exclusive data below 2 GeV (\rightarrow BaBar RadRet analyses; new 2π : M Davier)
- New (prelim.) HLMNT compilation; comparison

II. $\Delta \alpha(q^2)$: Vacuum Polarisation in the space- and time-like region. $\alpha(M_Z^2)$ III. Outlook

I. Recent developments in g-2

- QED: Predictions consolidated, further work (numerical five-loop) ongoing, big surprises very unprobable, error formidably small: a^{QED}_μ = 116584718.08(15) · 10⁻¹¹ √
- EW: reliable two-loop predictions, accuracy fully sufficient: $a_{\mu}^{EW} = (154 \pm 2) \cdot 10^{-11} \checkmark$
- Hadronic contributions: uncertainties completely dominate $\Delta a_{\mu}^{\rm SM}$!

Hadronic contributions from low γ virtualities not calculable with perturbative QCD
 For VacPol contributions use of *dispersion relations*, with exp. data for σ⁰_{had}(s):

$$a_{\mu}^{\text{had,LO}} = \frac{1}{4\pi^3} \int_{m_{\pi}^2}^{\infty} \mathrm{d}s \, \sigma_{\text{had}}^0(s) K(s) \,, \quad \text{with } K(s) = \frac{m_{\mu}^2}{3s} \cdot (0.63 \dots 1)$$

- ► Light-by-Light: [see talk A Nyffeler]
- No dispersion relation for L-by-L. *First Principles* calculations from lattice QCD are underway by two groups: QCDSF and T Blum *et al.* Both approaches promising but at an early stage and no results yet.
- Convergence of different recent model calculations. Below we will use the recent compilation from J Prades, E de Rafael, A Vainshtein: $a_{\mu}^{L-by-L} = (10.5 \pm 2.6) \cdot 10^{-10}$

Hadronic Vacuum Polarisation contributions: $\sigma_{ m had}^0(s)$

- \bullet For low energies, need to sum ~ 24 exclusive channels
- 1.43 2 GeV: Sum exclusive channels or use (old) inclusive data?
- above 2 GeV: inclusive data *and/or* use of perturbative QCD. [HLMNT use data driven approach and pQCD only from above ~ 11.09 GeV.]
- In each channel: Data combination from many experiments, non-trivial w.r.t. error analysis/correlations/different energy ranges. [HLMNT use non-linear $\chi^2_{\rm min}$ fit.]
- Note: σ^0 must be the *undressed* hadronic cross section (i.e. photon VP *subtracted* $\left[\cdot\left(\frac{\alpha}{\alpha(q^2)}\right)^2\right]$, otherwise double-counting with $a_{\mu}^{\text{had,NLO}}$)
- but must include final state photon radiation.
- → Uncertainty in treatment of radiative corrections, especially for older data sets! Assign additional error

HLMNT: $\delta a_{\mu}^{\text{had,VP+FSR}} \simeq 1.8 \times 10^{-10} \quad [\sim 10 \cdot \Delta a_{\mu}^{\text{EW}}]$

Most important changes in input data since HMNT 2006

- CMD-2: K^+K^- , $2\pi^+2\pi^-\pi^0$, $2\pi^+2\pi^-2\pi^0$
- SND: K^+K^- , $K^0_SK^0_L$
- KLOE: $\pi^+\pi^-(\gamma)$, $\omega\pi^0$
- **BES**: inclusive R
- CLEO: inclusive R
- In principle inclusion of new data in updated analysis straightforward.

Concentrate on two cases where not: most important 2π and the 1.43 - 2 GeV region.

The most important 2π channel:

The overall picture looks very good

Zoom in low energy and peak and $\rho - \omega$ interference region

- Very good agreement between data from CMD-2 and SND, fully consistent with earlier data.
- Low energy points crucial for recent improvement of $a_{\mu}^{\pi\pi}$.
- g 2 integral over KLOE data agrees extremely well with the corresponding integral over all other sets: KLOE alone: $a_{\mu}^{\pi\pi} = (384.16 \pm 3.47) \cdot 10^{-10}$, all data without KLOE: $(384.12 \pm 2.51) \cdot 10^{-10}$.
- → *However:* some differences in shape prevent good point-by-point combination:

KLOE 2008 $\pi\pi(\gamma)$ radiative return result compared to combination of all data w/out KLOE:

Error Δa_{μ} and χ^2_{\min}/dof as a function of the

Normalised difference of cross sections

• Tension with other data; less stable fit (w.r.t. variation of cluster size) if KLOE combined pointwise.

• Low KLOE points would force renormalisation within systematic uncertainty, artificially pulling up the fit.

Combination of the KLOE data after integration only (same treatment as in HMNT 2006 compilation): $\sim \rightarrow$

 $a_{\mu}^{\pi\pi}(0.596 \,\text{GeV} < \sqrt{s} < 0.972 \,\text{GeV}) = (384.13 \pm 2.03) \cdot 10^{-10}$

Region below 2 GeV: influence of recent BaBar Radiative Return analyses

 \rightarrow Important improvements over earlier data compilations.

BaBar Radiative Return data lower than less precise older data in most channels.

Region below 2 GeV: influence of recent BaBar Radiative Return analyses

(contd)

 \rightarrow BaBar lower in $2\pi^+ 2\pi^- \pi^0$ channel \rightsquigarrow errors for g-2 scaled up by $\sqrt{\chi^2_{\min}/dof} = 1.29$.

(contd 2)

 \rightarrow Again 'bad' $\chi^2_{\rm min}/{
m dof}$ of 2.7 and 2.9. Data not really compatible, inflate error.

Green: old analysis, red/orange: new Data

• Shape similar, but normalisation different.

- Question of completeness/quality of sum of exclusive data vs. reliability/systematics of old inclusive data ($\gamma\gamma2$, MEA, M3N, BBbar)
- HMNT up to now have used incl. data, in line with sum-rule analysis.

Check against perturbative QCD: QCD \sum -rule analysis

 $\Im s$

 $\Re s$

• Evaluate QCD \sum -rules of the form:

$$\int_{s_{\rm th}}^{s_0} \mathrm{d}s \, \mathbf{R}(s) f(s) = \int_C \mathrm{d}s \, D(s)g(s) \,, \qquad \text{with} \quad D(s) \equiv -12\pi^2 s \frac{\mathrm{d}}{\mathrm{d}s} \left(\frac{\Pi(s)}{s}\right) \,.$$

- The Adler D function is calculable in pQCD: $D(s) = D_0(s) + D_m(s) + D_{np}(s)$
- Take $f(s) = (1 s/s_0)^m (s/s_0)^n$ to maximize sensitivity to the required region, g(s) follows.
- Choose s_0 below the open charm threshold ($n_f = 3$ for pQCD).
- For m = 1, n = 0 one gets e.g.

$$\int_{s_{\rm th}}^{s_0} \mathrm{d}s \, R(s) \left(1 - \frac{s}{s_0} \right) = \frac{i}{2\pi} \int_C \, \mathrm{d}s \, \left(-\frac{s}{2s_0} + 1 - \frac{s_0}{2s} \right) D(s) \, .$$

New Sum rule analyses: R: data only

- Changes in data have changed the picture \rightarrow Sum over exclusive in line with QCD.
- Still rely on isospin relations for missing channels! [Large error from $K\bar{K}\pi\pi$!]
- For new HLMNT: combine inclusive and Sum over exclusive.

Perturbative QCD vs. inclusive data above 2 GeV (below charm threshold)

- R_{uds} from pQCD mostly below data in region above 2 GeV
- Latest BES data agree very well with pQCD
- \bullet shift downwards relevant for g-2 and $\Delta \alpha$

• Results of new HLMNT compilation (prelim.) ('Unblinding' only this Monday.. :)

- Accidental cancellation of mean value shifts between different energy regions (compared to HMNT 2006 analysis, units of 10^{-10}):
 - low energy exclusive channels, 0.32 1.43 GeV: -0.76
 - inclusive-exclusive region, 1.43 2 GeV: +2.10
 - higher energy inclusive, 2 11.09 GeV: -1.35
- ► $a_{\mu}(\text{LO, had}) = 689.41 \pm 3.61_{\text{exp}} \pm 1.82_{\text{rad}}$
- ► $a_{\mu}(\text{NLO}, \text{had}) = -9.79 \pm 0.06_{\text{exp}} \pm 0.03_{\text{rad}}$ [Was $a_{\mu}(\text{NLO}, \text{had}) = -9.79 \pm 0.09_{\text{exp}} \pm 0.03_{\text{rad}}$.]

Various choices w.r.t. data, compilation, au (?!), L-by-L: $a_\mu^{
m SM}$ always stays $< a_\mu^{
m EXP}$

Recent changes

$a_{\mu}^{\rm SM}$ compared to BNL world av.

TH: Improved LO hadronic (from e^+e^-):

[New data from CMD-2, SND, KLOE, BaBar, CLEO, BES. Combination of excl. (BaBar RadRet) and incl. data below 2 GeV.]

 $(6894 \pm 46) \cdot 10^{-11} \longrightarrow (6894 \pm 40) \cdot 10^{-11}$

- TH: Use of recent L-by-L compilation [PdeRV]: $a_{\mu}^{\text{L-by-L}} = (10.5 \pm 2.6) \cdot 10^{-10}$
- EXP: Small shift of BNL's value due to CODATA's shift of muon to proton magn. moment ratio: Was $a_{\mu} = 116~592~080(63) \times 10^{-11}$
 - $\rightarrow a_{\mu} = 116\ 592\ 089(63) \times 10^{-11}\ (0.5ppm)$
 - ► With this input HLMNT get: $a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{TH}} = (31.6 \pm 7.9) \cdot 10^{-10}$, ~ 4.0 σ

SUSY contributions in a_{μ} ?

$$a_{\mu}^{\text{SUSY},1-\text{loop}} \simeq \frac{\alpha}{8\pi \sin^2 \theta_W} \tan \beta \operatorname{sign}(\mu) \frac{m_{\mu}^2}{M_{\text{SUSY}}^2}$$

They mainly come from:

SUSY is a good candidate to explain $\Delta a_{\mu}=a_{\mu}^{\rm EXP}-a_{\mu}^{\rm SM}$, but

- no chargino at LEP
- so far no light Higgs
- $\bullet~\tilde{\tau}$ prob. not LSP
- \bullet + limits from direct searches
- SPS 1a' in 1σ band from g-2

II. $\Delta \alpha(q^2)$: Vacuum Polarisation in the space- and time-like

• Why Vacuum Polarisation / running $m{lpha}$ corrections ?

Precise knowledge of VP / $\alpha(q^2)$ needed for:

- Corrections for data used as input for g 2: 'undressed' σ_{had}^0 $a_{\mu}^{\text{had,LO}} = \frac{1}{4\pi^3} \int_{m_{\pi}^2}^{\infty} \mathrm{d}s \, \sigma_{\text{had}}^0(s) K(s) \,, \quad \text{with } K(s) = \frac{m_{\mu}^2}{3s} \cdot (0.63 \dots 1)$
- Determination of α_s and quark masses from total hadronic cross section R_{had} at low energies and of resonance parameters.
- Part of higher order corrections in Bhabha scattering important for precise Luminosity determination.
- $\alpha(M_Z^2)$ a fundamental parameter at the Z scale (the least well known of $\{G_\mu, M_Z, \alpha(M_Z^2)\}$), needed to test the SM via precision fits/constrain new physics.
- \rightarrow Ingredient in MC generators for many processes.

• Dyson summation of Real part of one-particle irreducible blobs Π into the effective, real running coupling α_{QED} :

Full photon propagator $\sim 1 + \Pi + \Pi \cdot \Pi + \Pi \cdot \Pi \cdot \Pi + \dots$

$$\rightarrow \alpha(q^2) = \frac{\alpha}{1 - \operatorname{Re}\Pi(q^2)} = \alpha / \left(1 - \Delta \alpha_{\operatorname{lep}}(q^2) - \Delta \alpha_{\operatorname{had}}(q^2)\right)$$

• The Real part of the VP, $\text{Re}\Pi$, is obtained from the Imaginary part, which via the *Optical* Theorem is directly related to the cross section, $\text{Im}\Pi \sim \sigma(e^+e^- \rightarrow hadrons)$:

$$\begin{split} \Delta \alpha_{\rm had}^{(5)}(q^2) &= -\frac{q^2}{4\pi^2 \alpha} \operatorname{P} \int_{m_{\pi}^2}^{\infty} \frac{\sigma_{\rm had}^0(s) \, \mathrm{d}s}{s - q^2} \,, \quad \sigma_{\rm had}(s) = \frac{\sigma_{\rm had}^0(s)}{|1 - \Pi|^2} \\ \left[\to \sigma^0 \text{ requires 'undressing', e.g. via } \cdot (\alpha/\alpha(s))^2 \, \rightsquigarrow \, \text{ iteration needed} \right] \end{split}$$

• Observable cross sections σ_{had} contain the |full photon propagator|², i.e. |infinite sum|². \rightarrow To include the subleading Imaginary part, use dressing factor $\frac{1}{|1-\Pi|^2}$. Comparison of different compilations

• Timelike $\alpha(s)$ from Fred Jegerlehner's (2003 routine as available from his web-page)

$$\alpha(s = E^2) = \alpha / \left(1 - \Delta \alpha_{\rm lep}(s) - \Delta \alpha_{\rm had}^{(5)}(s) - \Delta \alpha^{\rm top}(s)\right)$$

Figure from Fred Jegerlehner

• HMNT's evaluation of $\alpha_{\rm QED}(q^2)$ compared to other parametrisations:

- Differences between parametrisations clearly visible but within error band (of HMNT)
- Few-parameter formula from Burkhardt+Pietrzyk slightly 'bumpy' but still o.k.
- What is in your MC?

Timelike $\alpha(s = q^2 > 0)$ follows resonance structure:

- Step below just a feature of unfortunate grid.
- Difference below 1 GeV not expected from data.

[Comparisons with other parametrisations confirm HMNT.]

• HMNT compared to Novosibirsk's new parametrisation

 \rightarrow G Fedotovich's talk

Timelike $|1 - \Pi(s)|^2 \sim (\alpha(s)/\alpha)^2$ in ρ central energy region: A relevant correction!

(Different sign and prefactor, $-e^2$, used for Π by HMNT.)

 \rightarrow Small but visible differences, as expected from independent compilations.

• HMNT compared to Novosibirsk – Timelike, $\Delta lpha(q^2)$

 \rightarrow Differences of about one per-mille in the 'undressing' factor, up to -3/+5 per-mille in the $\rho - \omega$ interference regime, but likely to cancel at least partly in applications.

 \rightarrow As expected small contributions from ${\rm Im}\Pi.$

What about $\Delta lpha (M_Z^2)?$

→ With the same data compilation of σ_{had}^0 as for g - 2 HLMNT find: $\Delta \alpha_{had}^{(5)}(M_Z^2) = 0.02760 \pm 0.00015$ (HLMNT 09 prelim.) i.e. $\alpha (M_Z^2)^{-1} = 128.947 \pm 0.020$ [HMNT '06: $\alpha (M_Z^2)^{-1} = 128.937 \pm 0.030$]

Earlier compilations:

Group	$\Delta lpha_{ m had}^{(5)}(M_Z^2)$	remarks
Burkhardt+Pietrzyk '05	0.02758 ± 0.00035	data driven
Troconiz+Yndurain '05	0.02749 ± 0.00012	pQCD
Kühn+Steinhauser '98	0.02775 ± 0.00017	pQCD
Jegerlehner '08	0.027594 ± 0.000219	data driven/pQCD
$(M_0=2.5~{ m GeV})$	0.027515 ± 0.000149	Adler fct, pQCD
HMNT '06	0.02768 ± 0.00022	data driven

Adler function:
$$D(-s) = \frac{3\pi}{\alpha} s \frac{d}{ds} \Delta \alpha(s) = -(12\pi^2) s \frac{d\Pi(s)}{ds}$$

allows use of pQCD and minimizes dependence on data.

III. Outlook

Where is improvement needed most urgently?

New pie diagrams of contributions to a_{μ} and $lpha(M_Z)$ and their errors²: enjoy!

Critical regions:

$\rightarrow a_{\mu}$:

 $1.4-2~{\rm GeV}$ significantly improved; now ρ central and low needed, and still more in region below 2 GeV.

$\rightarrow \alpha(M_Z)$:

inclusive data improved/replaced, hence *better* control of radcors!

Pie diagrams of contributions to a_{μ} and $\alpha(M_Z)$ and their errors²:

HMNT 06:

HLMNT 09 (prelim.):

The biggest changes are from the incl-excl region and the inclusive data at higher energies.

Prospects for further improvements of g-2 and $\Delta \alpha$ through better data:

- Already more Radiative Return from KLOE !
 - \rightarrow check 2π down to threshold and hopefully combine to squeeze error.
- BaBar already very successful with RadRet for higher multiplicity channels \hookrightarrow critical region 1.4...2 GeV should improve further. $\rightarrow \pi \pi \gamma$!?!
- More opportunities for BELLE.
- With the upcoming VEPP-2000 in Novosibirsk, and hopefully further flavour factories, significant improvements foreseen.
- At higher energies, most relevant for $\Delta\alpha(M_Z^2)$, more analyses from BaBar and BES, and soon BES-II !
- \clubsuit With a new g-2 experiment, New Physics, if there, will be in reach.

Extras:

Effect of KLOE $\pi\pi$ data if fitted pointswise:

$\delta\left(\Delta \alpha_{ m had}^{(5)}(s) ight)$ of HMNT compilation

Error of VP in the timelike regime at low and higher energies:

 \rightarrow Below one per-mille (and typically $\sim 5 \cdot 10^{-4}$), apart from Narrow Resonances where the bubble summation is not well justified.