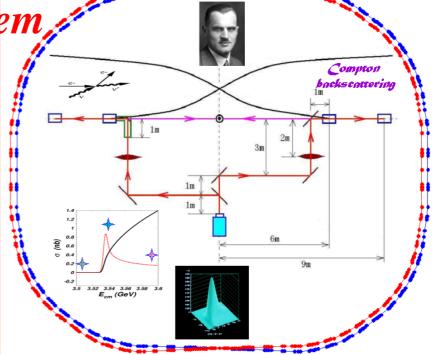
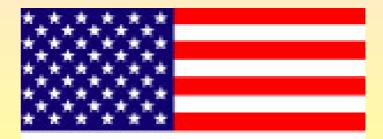
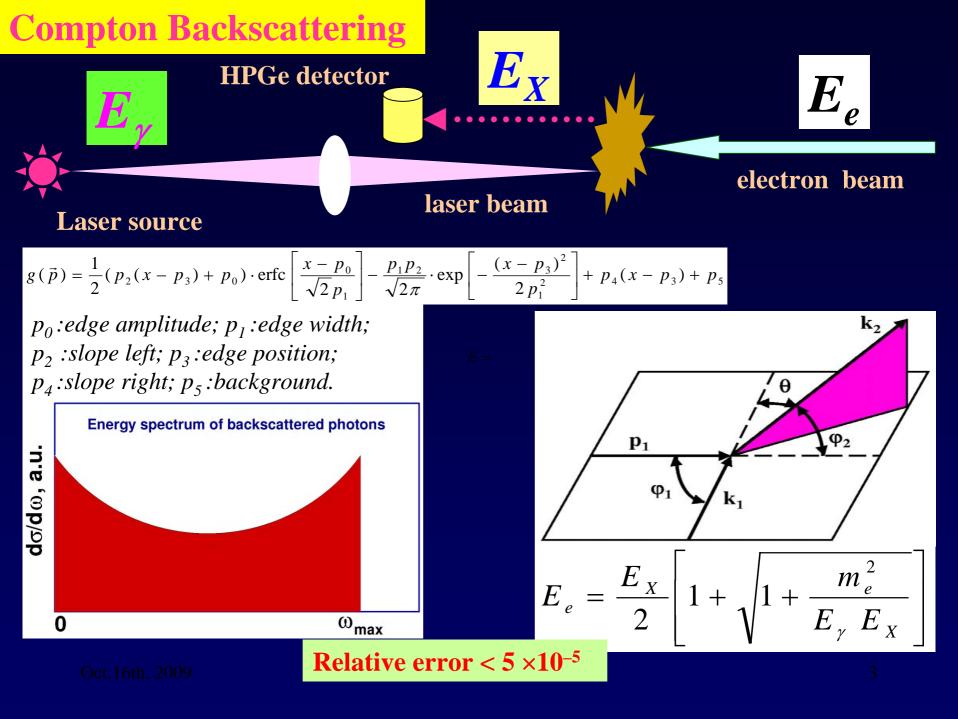
Beam energy calibration system at BEPCII

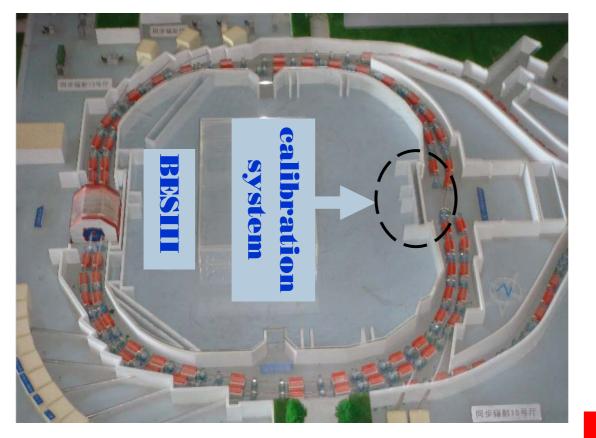

X.H. Mo

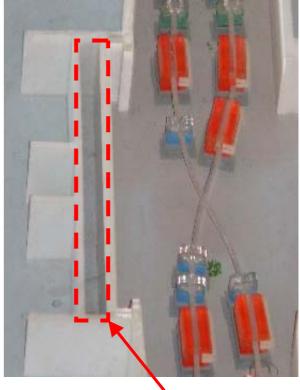
on behalf of beam energy calibration collaboration BINP (Russia), Hawaii University (USA), IHEP(CHINA).


October 16th, 2009; IHEP

Beam energy calibration system






Content

Introduction
 Laser and optics system
 Interaction system
 HPGe Detector system
 Schedule of future work

Laser and optics system

BEPC-II electron-positron storage ring

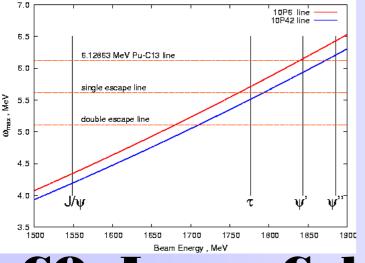
Corridor where optics system located

The beam energy calibration system will be located at the north crossing point (*NCP*) of BECPII.

Oct.16th, 2009

IHEP

Repairing of corridor at north IP of BEPCII



Before RP.ing

During RP.ing

After RP.ing

CO₂ **Laser: Coherent GEM Select 50**

		GEM Select 50		
Output Specifications	Output Power (W)	50		
	Wavelength (μm)	10.6 nominal		
	Mode Quality	TEM _{OO}		
	Polarization	Fixed Linear		
	Beam Diameter (mm, 1/e ²)	1.7 ±0.2		
	Beam Divergence (mrad)	8.3 ±0.6		
	Power Stability	±3%		
	Specifications are subject to change without notice. Protected under U.S. patents: 4363126, 4443877, 4787090. Licensed by PATLEX Corp. under U.S. Patent 4,704,583.			
Input Specifications	Electrical	200-240 VAC, 50-60 Hz, <8A		
	Cooling	Water + 25% Dow Frost* Coolant 1.5 GPM / 20°C ±5℃		
	Other cooling and power options are available. Contact your nearest Coherent sales representative. • Dow Frost is a trademark of the Dow Chemical Company.			
Physical Specifications	Weight (laser head)	18.14 kg (40 lbs.)		
	Physical Dimensions (LxWxH)	790.575 x 196.85 x 138.86 mm (31.125 x 7.75 x 5.467 in.)		

Wavelength (microns)

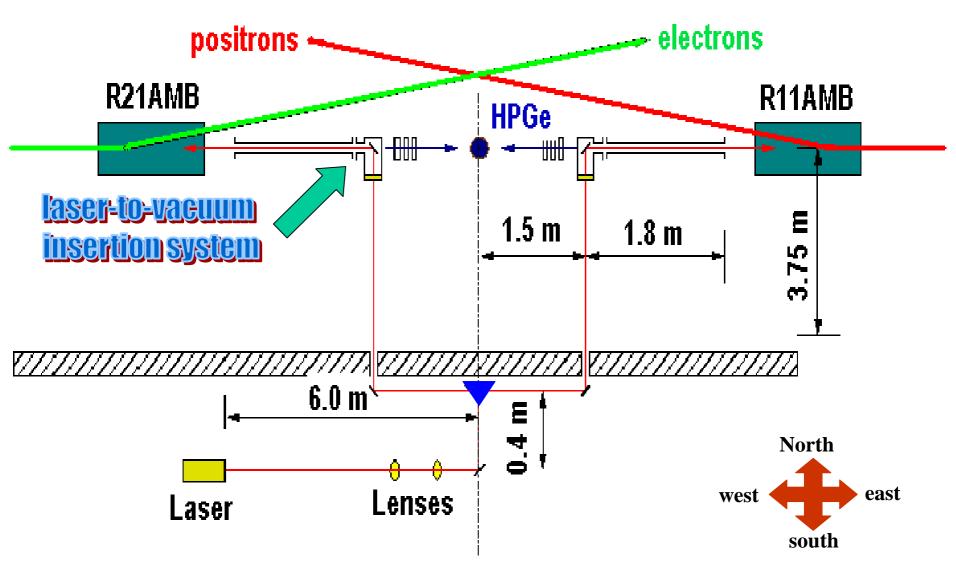

Support by US government (83.7+9.0+8.0+2.8 k US\$)

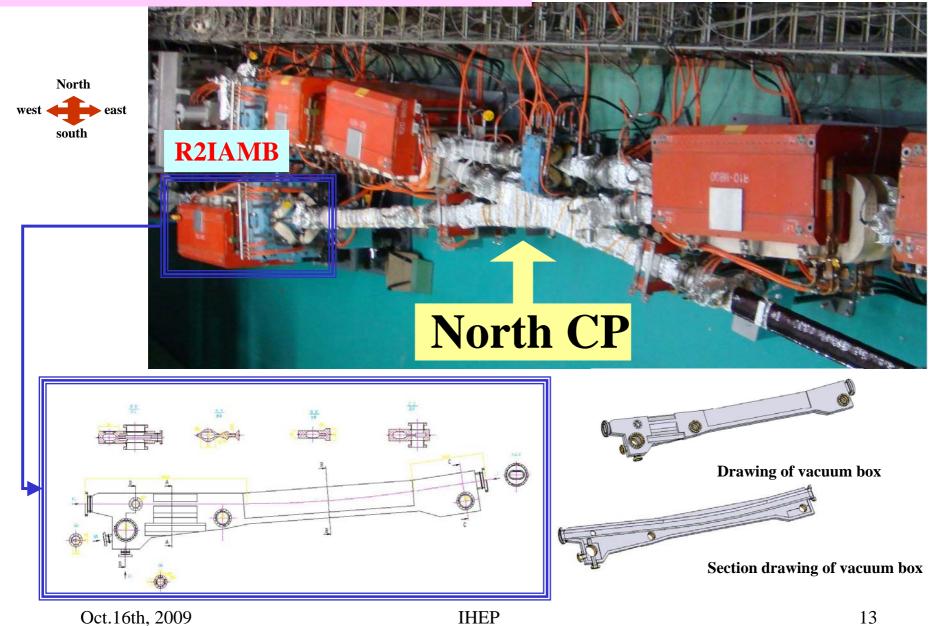
Optics system (BINP)

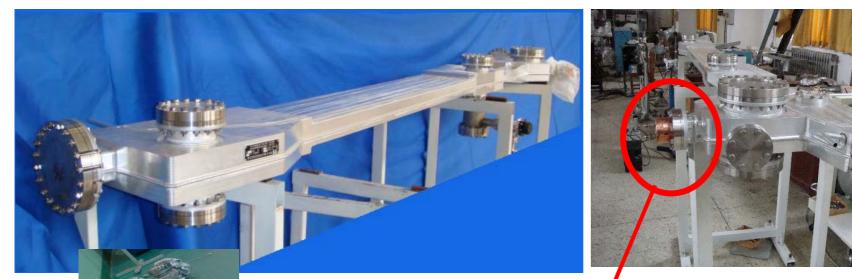
NONO	equipment	number	
OC-11	Plate for laser	1	1
OC-12	Laser support	1	
OC-13	Optial banch	1	I
OC-14, 15	Wall mout	2	ł
OC-22, 23	Lense support	2	
OC-24	Optical banch	1	
OC-25	Mirror with wall mount	1	l
OC-26, 27	Wall mount	2	ł
OC-30	Prisma with step motor and controller	1	I
OC-31, 32	Mirror with rotation mechanism, step motor -2 and controller -2 .	2	I
OC-33 - 35	Optical support	3	I
OC-36 OC-37, 38	Optical banch	3	8]
OC-39 - 41	Wall support	3	
OC-42 – 44	DC power supply, 24 V (DR-75-24)	3	

Design finished by the end of Jan., 2008; Manufacture before May,2008; Installation and preliminary alignment in May, 2008.

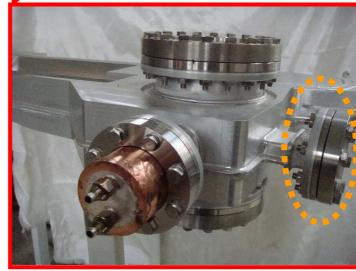
Optics system


Laser will be located here !

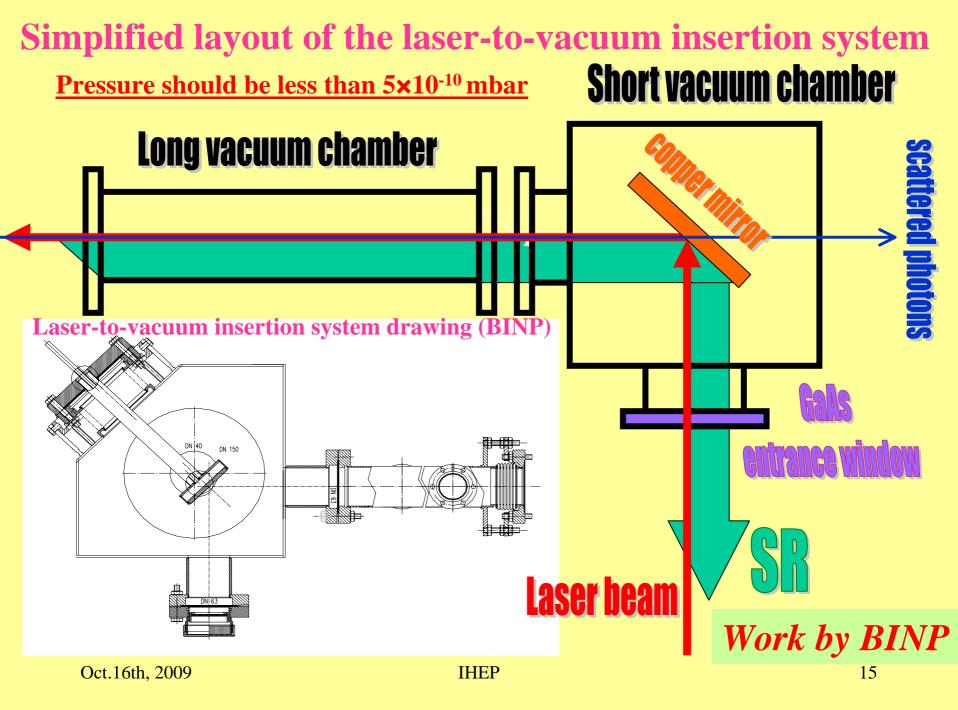

Layout of the beam energy calibration system


Interaction system

1.Reform of vacuum chamber (IHEP)
2.Insertion part (BINP&IHEP)


Reform of vacuum chamber

Work by IHEP Reformed vacuum chambers (totally two)


photon absorber

old chambers

Vacuum checks have been finished , photon absorbers are installed and the supports (4 sets) for vacuum boxes are ready

IHEP

Test of laser-to-vacuum insertion part (2009.5.12)

- *Test at BINP (09.04.26):*
- 1. Bakeout temperature 300°;
- 2. Bake duration 18h;
- 3. Vacuum system pressure 2.5×10⁻¹⁰ mbar
- 4. Sensitive limit leak detection He < 3 \times 10⁻¹² mbar/s;

New Chamber in magnet

Alignment

Oct.16th, 2009

Pump Installation

IHEP

long chamber

short chamber

ion pump

chamber installation

Alignment

laser-to-vacuum insertion par

Baking, vacuum up to 1.5 4.5 10⁻ ¹⁰ mbar

Oct.16th, 2009

IHEP

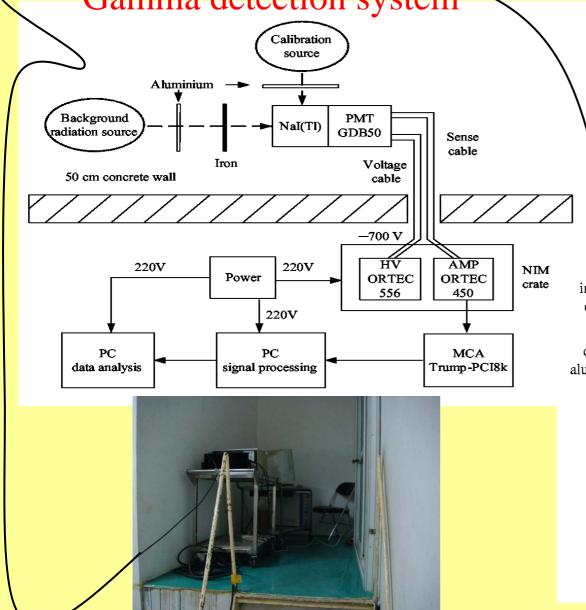
Pump Installation

18

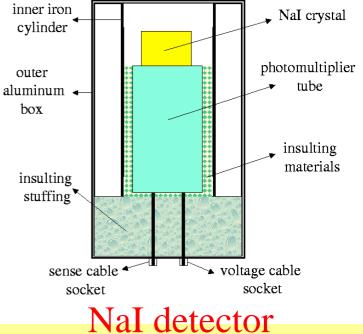
Laser-to-vacuum insertion part at north crossing point of BECPII

Radiation protection

Oct.16th, 2009

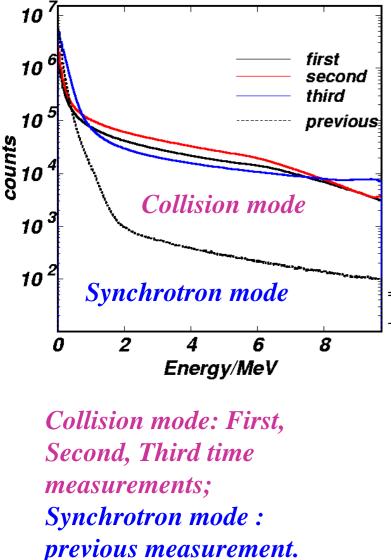

IHEP

19


Detector (HPGe)

 Measurement of radiation background
 Study of calibration Pu-C source

Gamma detection system



Oct.16th, 2009

IHEP

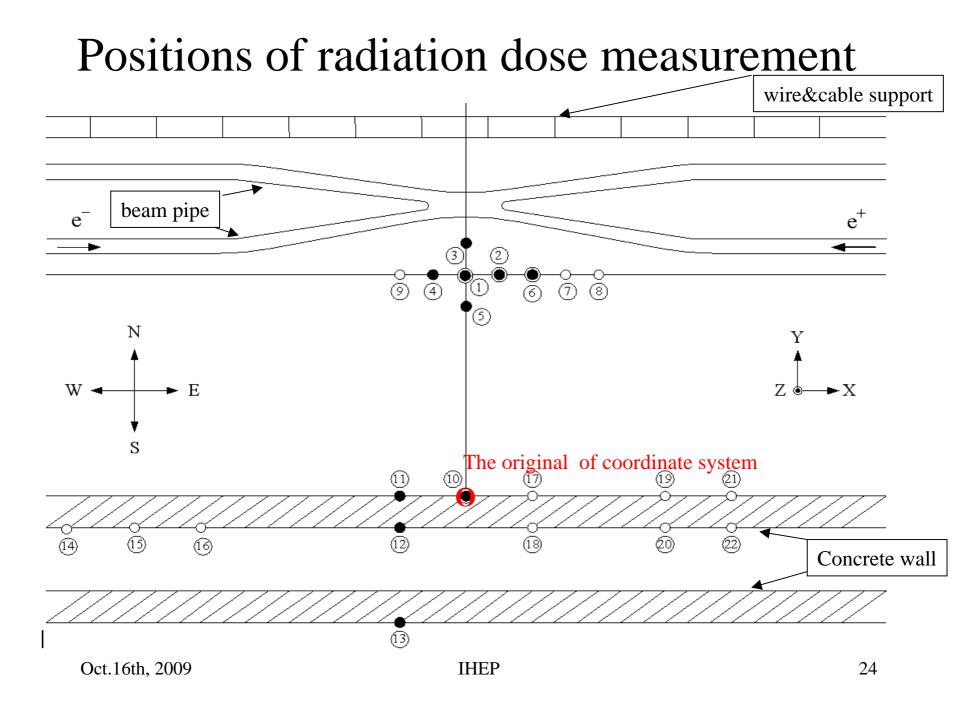
Results for radiation background measurement

- 1. Results for collision mode are similar;
- 2. Gamma background are much greater for collision mode than that of synchrotron;
- **3.** The total count is around 10⁴ per second;
- The background at 5.64MeV (for tau mass measurement) is about 0.24 per second which is small enough comparing with HPGe efficiency 10⁴ per second.

-		First	Second	Third	Previous	
	date/yy.mm.dd	2009.2.20	2009.3.12	2009.5.18	2008.3.8	
	Int.Curr./A·H					
	$(\mathcal{I}_{e^+}+\mathcal{I}_{e^-})$	5.50 + 2.82	6.85 + 8.13	7.92 + 6.26	0 + 4.58	
	$N_{tot}/{ m day}$	3.84×10^8	$5.53 imes 10^8$	$9.76 imes 10^8$	$5.75 imes 10^8$	
	$N_{tot}/\text{sec.}$	4.45×10^3	$6.41 imes 10^3$	1.13×10^4	$6.66 imes 10^3$	
	$N_{2-7}/{ m day}$	8.82×10^7	1.29×10^8	$6.43 imes 10^7$	$1.58 imes 10^6$	
	N_{2-7} /sec.	1020	1494	744.1	18.34	
	$N_{<2}/{\rm day}$	2.83×10^{8}	4.10×10^8	8.93×10^8	5.71×10^8	
	$N_{5.64}/{ m day}$	1.50×10^4	2.11×10^4	1.13×10^4	228	

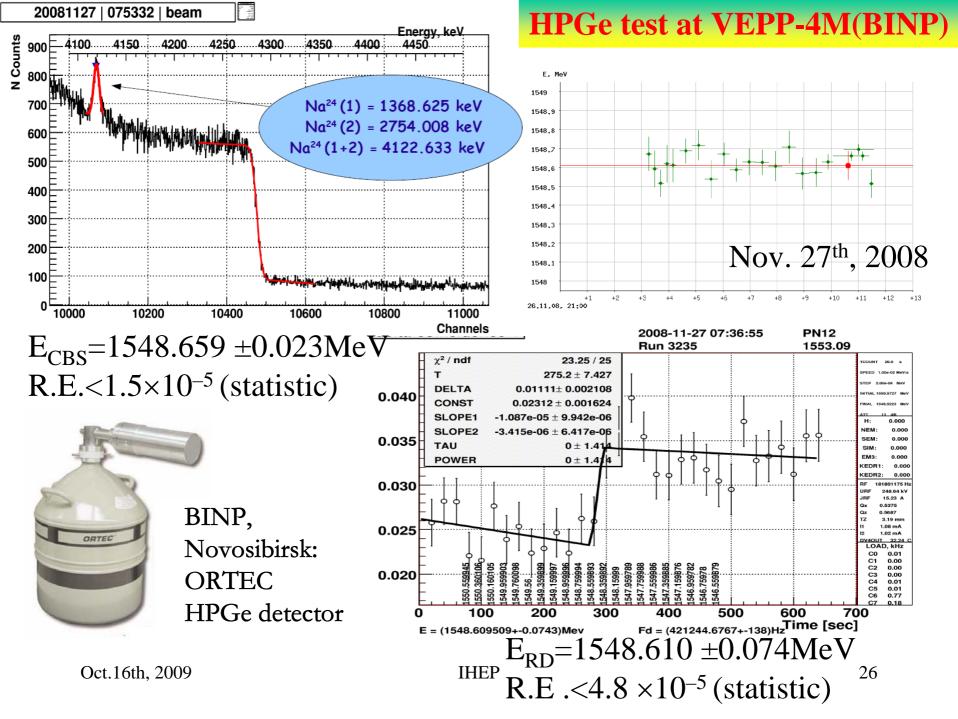
Two types of dosimeters by Landauer company

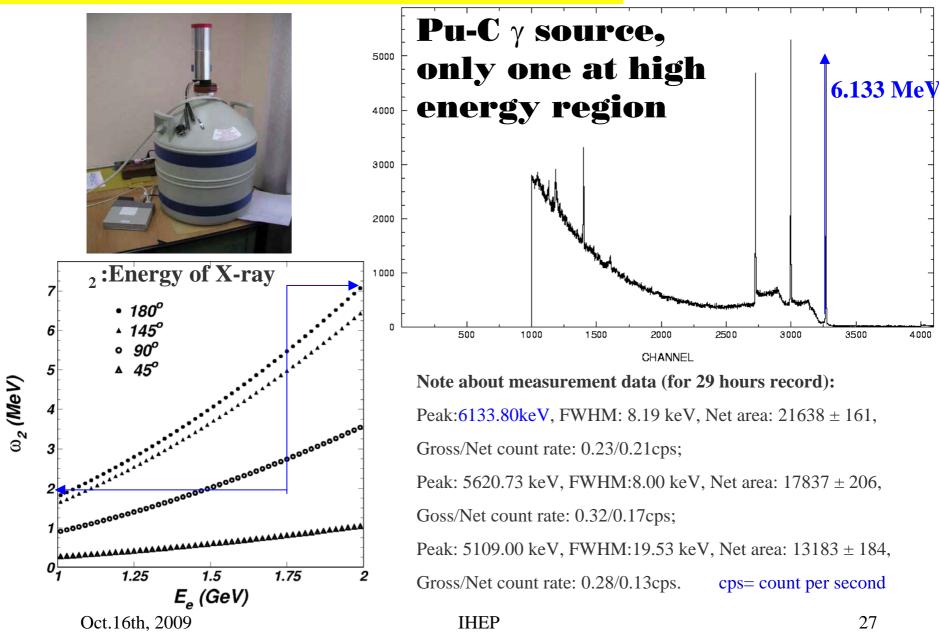
LANDAUER[®]



OSLD (optically stimulated luminescence detector) make of carbon-doped aluminum oxide $(Al_2O_3:C)$ which is mainly used for γ and X-ray detection.

SSBTD (solid state nuclear detector) stimulated luminescence) make of allyl diglycol carbonate $(C_{12}H_{18}O_7)$ which is mainly used for **neutron** detection.




serial	Position			Measu	red Dose			
number	(x, y, z)	$\gamma \& X$	Neutron	$\gamma \& X$	Neutron	$\gamma \& X$	Neutron	
	[cm]	$[\mathbf{m}]$	[m Sv]		[m Sv]		[m Sv]	
0	background	0.02	0.10	0.09	0.06	0.14	0.06	
Ð	(0,370,120)	147.97	27.58	88.8	2.02	157.91	1 .9 1	
(1)a	(0,370,170)	76.03	1.04					
Ֆթ	(0,370,70)	73.09	1.52	79.15	0.96			
(Dc	(0,370,20)	28.47	1.29			21.77	1.39	
2	(50, 370, 120)	81.97	1.18	76.49	1.45	81.49	1.85	
(2)a	(50, 370, 170)			42.80	0.54			
② b	(50, 370, 70)	27.55	1.56	37.66	0.69			
(2)c	(50, 370, 20)			17.93	1.00			
3	(0, 420, 120)	792.07	2.20	341.98	19.49	497.93	1 4.7 1	
4	$\left(-50, 370, 120 ight)$	89.15	2.45	70.58	1.58	77.14	1.48	
5	(0, 320, 120)	29.01	1.45	29.35	0.69	28.47	1.00	
6	(100, 370, 120)	68.06	1.10	61.80	1.06	74.38	2.10	
(б)а	(100, 370, 170)					61.69	1.00	
(6) հ	(100, 370, 70)					48.37	1.18	
Ø	(150, 370, 120)			71.62	1.23	79.47	1.43	
8	(200, 370, 120)					107.94	2.35	
9	$\left(-100, 370, 120 ight)$	84.4 1	1.56					
0	(0,0,120)	23.25	1.50	21.64	0.29	27.34	1.18	
(Ja	(0,0,20)	16.74	1.02	15.17	0.58	19.17	0.85	
O	(-100, 0, 120)	21.23	1.50	18.91	0.46	24.89	0.94	
Ø	(-100, -50, 120)	< 0.02	< 0.1	< 0.02	< 0.1	0.02	<0.1	
0	(-100, -220, 120)	< 0.02	< 0.1	< 0.02	< 0.1	< 0.02	<0.1	
Ø	$\left(-700, -50, 120 ight)$	< 0.02	< 0.1					
G	(-600, -50, 120)			< 0.02	< 0.1			
O	$\left(-500,-50,120 ight)$					< 0.02	<0.1	
Ø	(100,0,120)	20.02	0.69					
0	(100, -50, 120)	< 0.02	< 0.1					
0	(300,0,120)			34.67	1.48			
20	(300, -50, 120)			0.07	< 0.1			
Ð	(400,0,120)					82.86	2.91 -	
2	(400, -50, 120)					0.04	<0.1	
	Oct.16th, 2009]	HEP		

Results of radiation dose measurement Note: 1. 2009.2.17-24; accelerator machine study; average current ~200mA; 2. 2009.3.10-17; y' data taking, average current ~300mA; 3. 2009.5.13-27; accelerator machine study and turn to continuum data taking; average current ~300mA.

The radiation shielding is needed to guarantee that the HPGe works without severe damage.

Experiment for Pu-C source (IHEP)

Schedule

- 1. December, 2009
 - a) Radiation protection design for HPGe detector;
 - b) Installation of HPGe detector and CO₂ laser, computer system for data analysis and information communication;
- 2. January-May, 2010
 - a) Commissioning of system;
 - b) Test scan for confirming the correctness of working of beam calibration system.
- 3. Sometime before August, 2011
 - a) Fine scans for J/ψ and ψ' resonances , τ mass measurement;
 - b) Fine scan data analyses.

