τ Lepton Physics at Belle and BaBar

Simon Eidelman

Budker Institute of Nuclear Physics, Novosibirsk, Russia

Outline 1. Lepton universality and τ lepton mass

- 2. Lepton universality and τ branching fractions
- 3. Hadronic decays
- 4. Conclusions

General

- τ lepton is one of the six fundamental leptons
- As the heaviest lepton, it may decay into both leptons and hadrons: PDG lists more than 200 different τ decays
- We can study all interactions allowed in the Standard Model and search for effects of New Physics
- It is a very clean laboratory with no hadrons in the initial and only a few in the final state
- τ leptons will be an important tool at LHC

au Lepton Factories

Group	$\int L dt$, fb ⁻¹	$N_{\tau\tau}, 10^{6}$
LEP (Z-peak)	0.34	0.33
CLEO (10.6 GeV)	13.8	12.6
BaBar (10.6 GeV)	516	482
Belle (10.6 GeV)	782	719
τ -c (4.2 GeV)	10	32
SuperB	50k	45k

BaBar (~ 557 fb⁻¹) and Belle (~ 946 fb⁻¹) collected together about 1.5 ab⁻¹ B-factory is also a τ factory producing $0.9 \cdot 10^6 \tau^+ \tau^-$ pairs per each fb⁻¹!! Super-c- τ -factory (10³⁵ cm⁻² s⁻¹) with $\int Ldt = 10$ ab⁻¹ will yield $32 \cdot 10^9 \tau^+ \tau^-$ pairs!!

Lepton universality and M_{τ}

$$r = \left(\frac{G_{\tau \to e\nu_{\tau}\bar{\nu}_{e}}}{G_{\mu \to e\nu_{\mu}\bar{\nu}_{e}}}\right)^{2} = \left(\frac{M_{\mu}}{M_{\tau}}\right)^{5} \left(\frac{t_{\mu}}{t_{\tau}}\right) \mathcal{B}(\tau \to e\nu_{\tau}\bar{\nu}_{e}) \frac{F_{\rm cor}(M_{\mu}, M_{e})}{F_{\rm cor}(M_{\tau}, M_{e})}$$

r	$t_{ au},\mathrm{fs}$	$\mathcal{B}(\tau \to e \nu_{\tau} \bar{\nu}_e), \%$	$M_{ au}, { m MeV}$	Comments
0.9405	305.6 ± 6.0	17.93 ± 0.26	$1784.1_{-3.6}^{+2.7}$	PDG, 1992
± 0.0249	± 0.0185	± 0.0136	$+0.0071 \\ -0.0095$	-2.4σ
0.9999	291.0 ± 1.5	17.83 ± 0.08	$1777.0^{+0.30}_{-0.27}$	PDG, 1996
± 0.0069	± 0.0052	± 0.0045	± 0.0008	-0.01σ
1.0020	290.6 ± 1.1	17.84 ± 0.06	$1776.99_{-0.26}^{+0.29}$	PDG, 2004
± 0.0051	± 0.0038	± 0.0034	± 0.0008	$+0.4\sigma$

dash-dotted – ISR, solid – beam energy spead

 $f(M_p) \sim (p_1 + p_2 M_p) \tan^{-1} (M_p - p_3)/p_4 + p_5 + p_6 M_p$ The smearing of the endpoint and tail are caused by ISR/FSR and resolution

M_{τ} at Belle and BaBar – II

Summary of Belle and BaBar measurements

Group	BaBar	Belle	
$\int L dt$, fb ⁻¹	423	414	
$N_{\tau\tau}, \ 10^6$	388	380	
$N_{ m ev},~10^5$	682	580	
M_{τ}, MeV	$1776.68 \pm 0.12 \pm 0.41$	$1776.61 \pm 0.13 \pm 0.35$	

BaBar: B. Aubert et al., arXiv:0909.3562Belle: K. Belous et al., Phys. Rev. Lett. 99, 011801 (2007)

In the pseudomass method M_{τ^+} and M_{τ^-} are measured separately and $\Delta M = M_{\tau^+} - M_{\tau^-}$ can be determined

Belle: $\Delta M = 0.05 \pm 0.23 \pm 0.14$ MeV BaBar: $\Delta M = -0.61 \pm 0.23 \pm 0.06$ MeV

CPT Test by M_{τ^+} vs. $M_{\tau^-} - II$

Group	OPAL, 2000	Belle, 2007	BaBar, 2009
$N_{ au^+ au^-}, 10^6$	0.16	380	388
$\Delta M, { m MeV}$	0.0 ± 3.2	0.05 ± 0.27	-0.61 ± 0.24
$\Delta M/M_{\tau}, 10^{-4}$	0.0 ± 18.0	0.3 ± 1.5	-3.4 ± 1.4
$\Delta M/M_{\tau}, 10^{-4} \ 90\% CL$	< 30.0	< 2.8	< 5.5

From MC studies BaBar finds, assuming no CPT violation, that there is a 1.2% chance of obtaining a result as different from zero as that of BaBar.

τ Lepton Mass Measurements

Group	$M_{ au}, { m MeV}$
BES, 1996	$1776.96\substack{+0.18+0.25\\-0.21-0.17}$
PDG, 2006	$1776.99\substack{+0.29\\-0.26}$
KEDR, 2007	$1776.81^{+0.25}_{-0.23}\pm0.15$
Belle, 2007	$1776.61 \pm 0.13 \pm 0.35$
PDG, 2008	1776.83 ± 0.18
KEDR, 2008	$1776.69^{+0.17}_{-0.19} \pm 0.15$
BaBar, 2008	$1776.68 \pm 0.12 \pm 0.41$

 $r = 1.0039 \pm 0.0040 \ (0.99\sigma) \Rightarrow$ Leptonic universality is OK! The *r* sensitivity is six times higher than in 1992 (0.004 vs. 0.025) This test (G_{τ}/G_{μ}) is limited by the accuracy of τ_{τ} and $\mathcal{B}(\tau^{-} \rightarrow e^{-}\bar{\nu}_{e}\nu_{\tau})$ KEDR, 2008: A. Shamov, NPB (Proc. Suppl.) 189, 21 (2009)

Charged Current Universality – I

 $|G_{\mu}/G_{e}|$

$\mathcal{B}(\tau \to \mu) / \mathcal{B}(\tau \to e)$	1.0000 ± 0.0020
$\mathcal{B}(\pi \to \mu) / \mathcal{B}(\pi \to e)$	1.0021 ± 0.0016
$\mathcal{B}(K \to \mu) / \mathcal{B}(K \to e)$	1.004 ± 0.007
$\mathcal{B}(K \to \pi \mu) / \mathcal{B}(K \to \pi e)$	1.002 ± 0.002
$\mathcal{B}(W \to \mu) / \mathcal{B}(W \to e)$	0.997 ± 0.010

A. Pich: NPB (Proc. Suppl.) 181-182, 300 (2008)

Charged Current Universality – II

$|G_{\tau}/G_e|$

${\cal B}(au o \mu) au_\mu/ au_ au$	1.0005 ± 0.0023
$\mathcal{B}(W \to \tau) / \mathcal{B}(W \to e)$	1.036 ± 0.014

$|G_{\tau}/G_{\mu}|$

$\mathcal{B}(au o e) au_{\mu}/ au_{ au}$	1.0006 ± 0.0022
$\Gamma(\tau \to \pi) / \Gamma(\pi \to \mu)$	0.996 ± 0.005
$\Gamma(\tau \to K) / \Gamma(K \to \mu)$	0.979 ± 0.017
$\mathcal{B}(W \to \tau) / \mathcal{B}(W \to \mu)$	1.039 ± 0.013

Lepton Universality and Branching Fractions – I

Three recent measurements at BaBar (467 fb^{-1}):

Ratio	BaBar	PDG-08
$\mathcal{B}(\tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau) / \mathcal{B}(\tau^- \to e^- \bar{\nu}_e \nu_\tau)$	$0.9796 \pm 0.0016 \pm 0.0035$	0.9725 ± 0.0039
$\mathcal{B}(\tau^- \to \pi^- \nu_\tau) / \mathcal{B}(\tau^- \to e^- \bar{\nu}_e \nu_\tau)$	$0.5945 \pm 0.0014 \pm 0.0061$	0.6076 ± 0.0061
$\mathcal{B}(\tau^- \to K^- \nu_\tau) / \mathcal{B}(\tau^- \to e^- \bar{\nu}_e \nu_\tau)$	$0.03882 \pm 0.00032 \pm 0.00056$	0.0384 ± 0.0013

Mode	$e^- \bar{\nu}_e \nu_{ au}$	$\mu^- ar{ u}_\mu u_ au$	$\pi^- u_{ au}$	$K^- \nu_{\tau}$
$N_{ m ev}, 10^3$	884	731	369	25

$$\left(\frac{G_{\mu}}{G_{e}}\right)^{2} = \frac{\mathcal{B}(\tau^{-} \to \mu^{-} \bar{\nu}_{\mu} \nu_{\tau})}{\mathcal{B}(\tau^{-} \to e^{-} \bar{\nu}_{e} \nu_{\tau})} \frac{f(m_{e}^{2}/m_{\tau}^{2})}{f(m_{\mu}^{2}/m_{\tau}^{2})},$$

where $f(x) = 1 - 8x + 8x^3 - x^4 - 12x^2 \log x$, $m_{\nu} = 0$. $|G_{\mu}/G_e| = 1.0036 \pm 0.0029$, consistent with 1.000 ± 0.002 (A. Pich, 2008).

B. Aubert et al., arXiv:0808.1121

0

Lepton Universality and Branching Fractions – II

$$\left(\frac{G_{\tau}}{G_{\mu}}\right)^{2} = \frac{\mathcal{B}(\tau^{-} \to \pi^{-}\nu_{\tau})}{\mathcal{B}(\pi^{-} \to \mu^{-}\bar{\nu}_{\mu})} \frac{2m_{\pi}m_{\mu}^{2}\tau_{\pi}}{\delta_{\tau^{-} \to \pi^{-}\nu/\pi^{-} \to \mu^{-}\nu}m_{\tau}^{3}\tau_{\tau}} \left(\frac{1-m_{\mu}^{2}/m_{\pi}^{2}}{1-m_{\pi}^{2}/m_{\tau}^{2}}\right)^{2},$$

$$\left(\frac{G_{\tau}}{G_{\mu}}\right)^{2} = \frac{\mathcal{B}(\tau^{-} \to K^{-} \nu_{\tau})}{\mathcal{B}(K^{-} \to \mu^{-} \bar{\nu}_{\mu})} \frac{2m_{k}m_{\mu}^{2}\tau_{K}}{\delta_{\tau^{-} \to K^{-} \nu/K^{-} \to \mu^{-} \nu}m_{\tau}^{3}\tau_{\tau}} \left(\frac{1 - m_{\mu}^{2}/m_{K}^{2}}{1 - m_{K}^{2}/m_{\tau}^{2}}\right)^{2},$$

where the radiative corrections are $\delta_{\tau^- \to \pi^- \nu/\pi^- \to \mu^- \nu} = 1.0016 \pm 0.0014$ and $\delta_{\tau^- \to K^- \nu/K^- \to \mu^- \nu} = 1.0090 \pm 0.0022$. $|G_{\tau}/G_{\mu}| = 0.9859 \pm 0.0057(0.9836 \pm 0.0087)$ with pions (kaons) compared to $0.996 \pm 0.005(0.979 \pm 0.017)$.

Lepton Universality and Branching Fractions – III

From PDG $\mathcal{B}(\tau^- \to e^- \bar{\nu}_e \nu_{\tau}) = (17.82 \pm 0.05)\%$ and previous $\mathcal{B}(\tau^- \to \mu^- \bar{\nu}_\mu \nu_{\tau})$ the new WA $\mathcal{B}(\tau^- \to \mu^- \bar{\nu}_\mu \nu_{\tau}) = (17.363 \pm 0.043)\%$. From this and assuming $\mu - e$ universality as well as from τ_{τ}/τ_{μ} and assuming $\tau - \mu$ universality, one obtains $\mathcal{B}(\tau^- \to e^- \bar{\nu}_e \nu_{\tau})^{\text{univ}} = (17.833 \pm 0.030)\%$. The total hadronic branching $\mathcal{B}_{\text{had}} = 1 - 1.97257 \cdot \mathcal{B}(\tau^- \to e^- \bar{\nu}_e \nu_{\tau})^{\text{univ}} = (64.823 \pm 0.059)\%$ and the total hadronic width $R_{\tau,\text{had}} = 3.6350 \pm 0.0094$.

Decays with η Mesons at Belle					
Mode	Group	$N_{ m ev}$	$\mathcal{B}_{ ext{exp}}$		
$\pi^-\pi^0\eta u_ au$	Belle, 2008	5675 ± 111	$(1.35 \pm 0.03 \pm 0.08) \cdot 10^{-3}$		
	CLEO, 1992	125 ± 16	$(1.7 \pm 0.2 \pm 0.2) \cdot 10^{-3}$		
$K^-\eta\nu_{\tau}$	Belle, 2008	1545 ± 51	$(1.58 \pm 0.05 \pm 0.09) \cdot 10^{-4}$		
	CLEO, 1996	61 ± 14	$(2.6 \pm 0.5 \pm 0.4) \cdot 10^{-4}$		
$K^-\pi^0\eta\nu_{\tau}$	Belle, 2008	241 ± 34	$(4.6 \pm 1.1 \pm 0.4) \cdot 10^{-5}$		
	CLEO, 1999	47 ± 12	$(17.7 \pm 5.6 \pm 7.1) \cdot 10^{-5}$		
$K^{*-}\eta\nu_{\tau}$	Belle, 2008	119 ± 19	$(1.30 \pm 0.13 \pm 0.11) \cdot 10^{-4}$		
	CLEO, 1999	27 ± 6	$(2.90 \pm 0.80 \pm 0.42) \cdot 10^{-4}$		
$K_S \pi^- \eta \nu_{\tau}$	Belle, 2008	45 ± 8	$(4.4 \pm 0.7 \pm 0.2) \cdot 10^{-4}$		
	CLEO, 1999	15	$(1.00 \pm 0.35 \pm 0.11) \cdot 10^{-3}$		

Important for estimating BG in searches for second-class currents! Belle (490 fb⁻¹): K. Inami et al., Phys. Lett. B 672, 209 (2009)

τ^- Decays with Kaons

- 1. Decays with 1 or 3 kaons are Cabibbo-suppressed, $A \propto \sin \theta_c$
 - $\mathcal{B}(\tau^- \to S = -1) = (2.87 \pm 0.12)\%$, ALEPH, 1999; (2.81 ± 0.19)%, OPAL, 1999
 - From strange spectral functions m_s , $|V_{us}|$
 - Hadronic physics, K^*
- 2. Decays with 2 kaons, $A \propto \cos \theta_c$
 - $\mathcal{B}(\tau^- \to (K\bar{K}X)^-\nu_\tau) \sim 0.7\%$
 - Vector or Axial-vector? Wess-Zumino anomaly
 - CVC tests in τ vs. e^+e^-
 - Hadronic physics, $K^* \overline{K} n \pi$, $V(\rho, \phi) n \pi$

$\tau^- \to (K\pi)^- \nu_\tau$ at Belle and BaBar – I

Summary of Belle and BaBar $\tau^- \to (K\pi)^- \nu_{\tau}$ measurements

Mode	Group	$\int L dt$, fb ⁻¹	$N_{\tau\tau}, \ 10^{6}$	$N_{\rm ev}, 10^3$	$\mathcal{B},\%$
$K^-\pi^0\nu_{\tau}$	BaBar $[1]$	230	212	78.1	$0.416 \pm 0.003 \pm 0.018$
$K_S^0 \pi^- \nu_\tau$	BaBar $[2]$	385	353	83.7	$0.420 \pm 0.002 \pm 0.012$
$K_S^0 \pi^- \nu_\tau$	Belle [3]	351	313	53.1	$0.404 \pm 0.002 \pm 0.013$

BaBar [1]: B. Aubert et al., Phys. Rev. D 76, 051104 (2007)
BaBar [2]: B. Aubert et al., arXiv:0808.1121
Belle [3]: D. Epifanov et al., Phys. Lett. B 654, 65 (2007)

 $\mathcal{B}^{\text{BaBar}}(K^{-}\pi^{0}\nu_{\tau}) =$ (0.416 ± 0.003 ± 0.018)% $\mathcal{B}^{\text{PDG}}(K^{-}\pi^{0}\nu_{\tau}) =$ (0.454 ± 0.030)% For both modes new \mathcal{B} are consistent with PDG, but lower!

Beijing, From ϕ to $\psi - 2009$

The $M_{K\pi}$ spectrum is well described by the $K^*(892)$, $K^*(800)$ (κ) and $K_0^*(1430)$ (or $K^*(1410)$).

 $K^*(892)^0$ Mass and Width Measurement at Belle

 $M(K^*(892)^-) = (895.47 \pm 0.20 \pm 0.44 \pm 0.59) \text{ MeV}$ $\Gamma(K^*(892)^-) = (46.2 \pm 0.6 \pm 1.0 \pm 0.7) \text{ MeV}$

S.Eidelman, BINP

p.24/29

$- \rightarrow h^- h^+$	$h^- u_{ au}$	from	BaBar	and Be	lle
-------------------------	----------------	------	-------	--------	-----

Mode	BaBar, 342 fb^{-1}	Belle, 666 fb^{-1}	PDG2006
$N_{ m ev}, 10^6$	1.6	8.86	_
$\mathcal{B}(\pi^{-}\pi^{+}\pi^{-}), 10^{-2}$	$8.83 \pm 0.01 \pm 0.13$	$8.42 \pm 0.01 \pm 0.26$	9.02 ± 0.08
$N_{ m ev}, 10^4$	7.0	79.4	_
$\mathcal{B}(K^{-}\pi^{+}\pi^{-}), 10^{-3}$	$2.73 \pm 0.02 \pm 0.09$	$3.28 \pm 0.01 \pm 0.17$	3.33 ± 0.35
$N_{ m ev}, 10^4$	1.8	10.8	_
$\mathcal{B}(K^-K^+\pi^-), 10^{-3}$	$1.346 \pm 0.010 \pm 0.036$	$1.53 \pm 0.01 \pm 0.05$	1.53 ± 0.10
$N_{ m ev}$	275	3160	_
$\mathcal{B}(K^{-}K^{+}K^{-}), 10^{-5}$	$1.58 \pm 0.13 \pm 0.12$	$2.62 \pm 0.15 \pm 0.17$	$< 3.7 \cdot 10^{-5}$

BaBar: B. Aubert et al., Phys. Rev. Lett. 100, 011801 (2008)
Belle: M.J. Lee et al., arXiv:0812.0480
Results of Belle and BaBar are not very consistent

 $|V_{us}|$ determination from $\mathcal{B}(\tau^- \to K^- \nu_\tau) / \mathcal{B}(\tau^- \to \pi^- \nu_\tau)$

$$\frac{\mathcal{B}(\tau^- \to K^- \nu_{\tau})}{\mathcal{B}(\tau^- \to \pi^- \nu_{\tau})} = \frac{f_K^2 |V_{us}|^2}{f_\pi^2 |V_{ud}|^2} \frac{\left(1 - \frac{m_K^2}{m_\tau^2}\right)^2}{\left(1 - \frac{m_\pi^2}{m_\tau^2}\right)^2} \times \frac{\delta_{\tau^- \to K^- \nu_{\tau}}}{\delta_{\tau^- \to \pi^- \nu_{tau}}} = 0.06531 \pm 0.00056 \pm 0.00093,$$

All non-perturbative effects are in $f_K/f_{\pi} = 1.189 \pm 0.007$ from the lattice. One obtains $|V_{us}| = 0.2254 \pm 0.0023$ consistent with 0.2262 ± 0.0011 from unitarity.

Another method, which uses $R_{\tau,\text{strange}}$ based on PDG plus BaBar/Belle \mathcal{B} 's, gives $|V_{us}| = 0.2169 \pm 0.0029$ or $\sim 3\sigma$ lower than the unitarity value. Might be due to theory problems.

Monte Carlo Simulation of τ Decays

TAUOLA, KORALB(Z) – very important tools for LEP, CLEO, BaBar, Belle, LHC

S.Jadach, Z.Wąs, Comp. Phys. Commun. 36, 191 (1985);
S.Jadach, J.H.Kühn,Z.Wąs, Comp. Phys. Commun. 64, 275 (1990);
M.Jeżabek, Z.Wąs, S.Jadach, J.H.Kühn, Comp. Phys. Commun. 70, 69 (1992)
High-statistics experiments ⇒ more precise description

Novosibirsk e^+e^- data for hadronic currents in $\tau \to 4\pi\nu_{\tau}$

A.Bondar, SE, ..., Z.Wąs, M.Worek, Comp. Phys. Commun. 146, 139 (2002)

Improvement in J.H.Kühn, Z.Wąs, Acta Phys. Polon. B39, 147 (2008).

Conclusions

- We know a lot after CLEO and LEP, Belle and Babar gaining speed
- Advantages in statistics and searches. Systematic effects?
- Lepton universality holds, more precise τ_{τ} and \mathcal{B}_{e} needed
- Interesting possibilities for QCD, $|V_{us}|$
- Why most $\mathcal{B}_{new} < \mathcal{B}_{old}$?
- Clean laboratory for studies of light mesons, e.g., of various K^* 's
- Hadronic f/f in TAUOLA should be updated
- B factories with ~ 1.5 ab^{-1} are also unique τ factories with high potential for New Physics and precision studies in SM, even more expected from SuperB and Super- $c - \tau$

Backup Slides

τ Lifetime

Measurements of τ_{τ} , fs

Source	$N_{ au au}, 10^3$	$ au_{ au},\mathrm{fs}$	$\delta au_{ m sys},\%$
DELPHI, 2004	150	$290.9 \pm 1.4 \pm 1.0$	0.34
PDG, 2006	_	290.6 ± 1.0	0.28
BaBar, 2004	79000	$289.40 \pm 0.91 \pm 0.90$	0.31

- Measurement bias 0.220%
- Background 0.142%
- Alignment 0.111%
- τ momentum 0.100%
- Total -0.310%

τ Leptonic Branching

Measurements of $B_{\rm e}, \%$

Source	$N_{\tau\tau}, 10^3$	B,%	$\delta B_{ m sys},\%$
ALEPH, 2005	56	$17.837 \pm 0.072 \pm 0.036$	0.2
CLEO, 1997	3250	$17.76 \pm 0.06 \pm 0.17$	1.0
PDG, 2006	—	17.84 ± 0.05	0.28

Systematic uncertainties in CLEO, %

$N_{\rm ev}$	$N_{ au au}$	ϵ	Trig.	PID	BG	Total
0.36	0.71	0.48	0.28	0.19	0.16	1.00

Alternatives for the pseudomass fit parameterization

Two other functions were considered:

$$F_1(M_p) = (p_3 + p_4 M_p) \frac{M_p - p_1}{\sqrt{p_2 + (M_p - p_1)^2}} + p_5 + p_6 M_p$$

and

$$F_2(M_p) = (p_3 + p_4 M_p) \frac{-1}{1 + \exp \frac{M_p - p_1}{p_2}} + p_5 + p_6 M_p.$$

Systematic uncertainties in M_{τ}

Source	BaBar	Belle
CM energy and $ p $ reconstruction	0.40	0.26
MC Modeling $(\tau \to 3\pi\nu_{\tau})$	0.05	0.02
MC Statistics	0.05	0.14
Fit Range	0.05	0.04
Parameterization	0.03	0.18
Momentum resolution	Negl.	0.02
Background	Negl.	0.01
Total	0.41	0.35

Both groups assume $M_{\nu_{\tau}}=0$

Belle: 10 MeV $\Rightarrow \Delta M_{\tau} = -0.1$ MeV

BaBar: 1 MeV $\Rightarrow \Delta M_{\tau} = -0.02$ MeV

Charge asymmetry from ΔM in D^{\pm} , D_s^{\pm} , Λ_c^{\pm} : Belle - 0.14 MeV, BaBar - 0.06 MeV

$|V_{us}|$ from BaBar and Belle

S. Banerjee at KAON 07 combined the recent data on the $K\pi\nu_{\tau}$ with older data for the other modes

