KLOE results on scalar and pseudoscalar mesons

(Universita' La Sapienza e INFN – Roma) for the KLOE Collaboration

P.Gauzzi

PHIPSI09 13-16 October 2009 – Beijing

- Frascati ϕ -factory: e^+e^- collider @ $\sqrt{s} \approx 1020 \text{ MeV} \approx M_{\phi}$; $\sigma_{\text{peak}} \approx 3.1 \text{ }\mu\text{b}$
- •Best performances in 2005:
 - $L_{peak} = 1.4 \times 10^{32} \text{ cm}^{-1} \text{s}^{-1}$
 - $\int \mathbf{L} dt = 8.5 \ \mathrm{pb^{-1}/day}$
- KLOE: 2.5 fb⁻¹ @ $\sqrt{s}=M_{\phi}$ ($\Rightarrow 8 \times 10^9 \phi$ produced) + 250 pb⁻¹off-peak @ $\sqrt{s}=1000$ MeV
 - DAΦNE upgrade: New interaction scheme implemented, large beam crossing angle + crab waist
 - ⇒ Luminosity increase: factor ~ 3
 ∫ Ldt ≈ 1 pb⁻¹/hour
 - KLOE2 data-taking starting in 2010

P.Gauzzi (see G.Venanzoni's talk)

9 - Beijing

Physics at a **\$\$**-factory

- Kaon physics: $|V_{us}|$ and CKM unitarity, CP and CPT violation, rare decays, χ PT tests, quantum mechanics tests
- Light meson spectroscopy: scalar, pseudoscalar and vector mesons
- Hadronic cross-section via ISR $[e^+e^- \rightarrow \gamma \ (\pi^+\pi^-)]$: hadronic corrections to $(g-2)_{\mu}$ • $\gamma\gamma$ physics

Decay channel	Events (2.5 fb⁻¹)	0 ⁻ 1 ⁻ 0 ⁺
K + K -	3.7×10^{9}	
K _L K _S	2.5×10^{9}	$BR=83\% \qquad \qquad$
$ ho\pi+\pi^+\pi^-\pi^0$	1.1×10^{9}	$\mathbf{K}\mathbf{\overline{K}} \rightarrow \mathbf{f}_{0}(980)$
ηγ	9.7 × 10 ⁷	$BR=6.2\times10^{-5}$
$\pi^0\gamma$	9.4 × 10 ⁶	η (958) γ ρ (770)
η′γ	4.6×10^{5}	BR=1.3%
ππγ	$2.2 imes 10^6$	$\begin{array}{c c} \eta \\ RR = 1.3 \times 10^{-3} \end{array}$
ηπ ⁰ γ	5.2×10^{5}	$\frac{\pi^0}{\pi^0}$

• Motivation: the structure of the scalars below 1 GeV is still an open question $[q\overline{q}, q\overline{q}q\overline{q}, K\overline{K} \text{ molecule }, ...]$

• Radiative decays $\phi \rightarrow PP'\gamma$ dominated by scalar mesons ($\phi \rightarrow S\gamma$, $S \rightarrow PP'$)

• KLOE: P P' =
$$\pi^0 \pi^0 \Rightarrow f_0(980)/\sigma(600)$$

 $\pi^+\pi^- \Rightarrow f_0(980)/\sigma(600)$
 $\eta\pi^0 \Rightarrow a_0(980)$
 $K_SK_S \Rightarrow (f_0/a_0) \rightarrow K^0\overline{K}^0$

⇒ measurement of Br's and the resonance parameters (masses and couplings)

 $e^+e^- \rightarrow \pi\pi\gamma$: $f_0(980)$ • $f_0(980) \rightarrow \pi^0 \pi^0$: Dalitz plot study; two contributions, $\phi \rightarrow S\gamma$ [S= $f_0(980), \sigma(600)$] and $e^+e^- \rightarrow \omega \pi^0 (\omega \rightarrow \pi^0 \gamma)$ $\pi^0\pi^0\gamma$ ~400k events 10² 0.8 $\mathbf{Br}(\phi \to \mathbf{S} \gamma \to \pi^0 \pi^0 \gamma) =$ $\omega \pi^0$ 0.6 $= (1.07 + 0.01 + 0.04 + 0.05) \times 10^{-4} \times 10^{-4}) \times 10^{-4}$ 10 f₀(980) 0.4 [EPJC49(2007)473] 0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 $M_{\pi\pi}^{2} (\text{GeV}^2)$

 ${M_{\pi\gamma}}^2\,(GeV^2)$

 $e^+e^- \rightarrow \pi\pi\gamma$: $f_0(980)$ • $f_0(980) \rightarrow \pi^0 \pi^0$: Dalitz plot study; two contributions, $\phi \rightarrow S\gamma$ [S= $f_0(980), \sigma(600)$] and $e^+e^- \rightarrow \omega \pi^0 (\omega \rightarrow \pi^0 \gamma)$ $\pi^0\pi^0\gamma$ ~400k events 10 2

[PLB634(2006)148]

3,500

• $f_0(980) \rightarrow \pi^+\pi^-$:

0.8

$f_0(980)$ parameters

- Fit the $\pi^0 \pi^0 \gamma$ Dalitz plot and the M($\pi^+\pi^-$) distribution with the same scalar amplitude (with $\sigma(600)$ with fixed parameters)
- Latest version of the Kaon Loop model [N.Achasov]

$f_0(980)$ param.	$f_0 \rightarrow \pi^0 \pi^0$	$f_0 \rightarrow \pi^+ \pi^-$
M _{f0} (MeV)	984.7	983.7
$g_{f0\pi+\pi-}$ (GeV	-1.82	-2.22
g _{f0K+K-} (GeV)	3.97	4.74
$R = (g_{f0K+K-}/g_{f0\pi+\pi-})^2$	~ 4.8	~ 4.6

	$f_0 \rightarrow \pi^0 \pi^0$	$f_0 \rightarrow \pi^+ \pi^-$
$g_{\phi f0\gamma}$ (GeV-1)	$\textbf{2.61} \pm \textbf{0.02}^{+0.31}_{-0.08}$	1.2 - 2.0

σ(600) fixed parameters : $M_{\sigma}=462 \text{ MeV}; \Gamma_{\sigma}=286 \text{ MeV}$ $g_{\sigma K+K-}=0.5 \text{ GeV}$ $g_{\sigma \pi+\pi-}=2.4 \text{ GeV}$ Achasov,Kiselev,PRD73(2006)054029

Agreement between the two channels Next: combined fit

 g_{φf0γ} from fit to No Structure model (point-like coupling φf₀γ)
 [G.Isidori, L.Maiani et al., JHEP0605(2006)049]

 $\phi \rightarrow \eta \pi^0 \gamma$: $a_0(980)$

1) $\eta \rightarrow \gamma \gamma$ (Br=38.31%) \Rightarrow 5 photon final state Total background = 55%

$$Br(\phi \rightarrow \eta \pi^0 \gamma) = (7.01 \pm 0.10_{stat} \pm 0.20_{syst}) \times 10^{-5}$$

2) $\eta \rightarrow \pi^+ \pi^- \pi^0$ (Br=22.73%) $\Rightarrow 5\gamma + 2$ tracks Total background = 15%

 $Br(\phi \rightarrow \eta \pi^0 \gamma) = (7.12 \pm 0.13_{stat} \pm 0.22_{syst}) \times 10^{-5}$

 $\phi \rightarrow \eta \pi^0 \gamma$: $a_0(980)$

1) $\eta \rightarrow \gamma \gamma$ (Br=38.31%) \Rightarrow 5 photon final state Total background = 55%

$$Br(\phi \rightarrow \eta \pi^0 \gamma) = (7.01 \pm 0.10_{stat} \pm 0.20_{syst}) \times 10^{-5}$$

2) $\eta \rightarrow \pi^+ \pi^- \pi^0$ (Br=22.73%) $\Rightarrow 5\gamma + 2$ tracks Total background = 15%

 $Br(\phi \rightarrow \eta \pi^0 \gamma) = (7.12 \pm 0.13_{stat} \pm 0.22_{syst}) \times 10^{-5}$

- Combined fit of the two $M(\eta \pi^0)$ distributions
 - $\Rightarrow \text{ Free parameter: } \mathbf{R}_{\eta} = \mathbf{Br}(\eta \rightarrow \gamma \gamma) / \mathbf{Br}(\eta \rightarrow \pi^{+} \pi^{-} \pi^{0})$

	KL	NS	
M _{a0} (MeV)	$982.5 \pm 1.6 \pm 1.1$	982.5 (fixed)	
g _{a K+K-} (GeV)	$2.15 \pm 0.06 \pm 0.06$	$2.01 \pm 0.07 \pm 0.28$	
$g_{a\eta\pi}$ (GeV)	$2.82 \pm 0.03 \pm 0.04$	$2.46 \pm 0.08 \pm 0.11$	
$g_{\phi a\gamma} (\text{GeV}^1)$	$1.58 \pm 0.10 \pm 0.16$	$1.83 \pm 0.03 \pm 0.08$	M _{a0}
$Br(VDM) \times 10^6$	$\textbf{0.92} \pm \textbf{0.40} \pm \textbf{0.15}$	~ 0	$\Gamma_{tot}($
R _η	$1.70 \pm 0.04 \pm 0.03$	$1.70 \pm 0.03 \pm 0.01$	(PD
$\mathbf{R}=\left(\mathbf{g}_{\mathbf{a}\mathbf{K}+\mathbf{K}-}/\mathbf{g}_{\mathbf{a}\boldsymbol{\eta}\boldsymbol{\pi}}\right)^{2}$	$0.58 \pm 0.03 \pm 0.03$	$0.67 \pm 0.06 \pm 0.13$	• VI
$\mathbf{P}(\chi^2)$	10.4%	30.9%	• PI

a_0 and f_0 couplings

		SU(3)		
		4 q	qqt	ar
$(g_{a0K+K-}/g_{a0\eta\pi})^2$	0.6 - 0.7	1.2 – 1.7	0.	4
	Crystal Barrel: 0.525 ± 0.043			
	SND (2000) : 1.8 ± 2.5			
$(g_{f0K+K-}/g_{f0\pi+\pi-})^2$	4.6 - 4.8	>>1	$>> 1 (f_0 = ssbar)$	$1/4 (f_0 = nnbar)$
	CMD-2 (1999) : 3.61 ± 0.62			
	SND (2000) : 4.6 ± 0.8			
	BES (2005) : 4.21 ± 0.33			
$(g_{f0K+K-}/g_{a0K+K-})^2$	4-5	1	2	1

• Large $g_{\phi S\gamma} \Rightarrow$ sizeable *s* quark content ?

Meson	$g_{\phi M\gamma}(GeV^{-1})$
π^0	0.13
η	0.71
η΄	0.75
<i>a</i> ₀ (980)	1.6 – 1.8
<i>f</i> ₀ (980)	1.2 – 2.8

10

10 ⁻⁶

12

[PLB679(2009),10]

0 990

12

10

8

6

2

-9

10

• (qq)

● (4q)

10 -8

1000

1010

M_{KK}

1020

1030

Gokalp et al. 07 Escribano 07

Achasov-Gubin 01

Ebramon et al. 92

Fajfer-Oakes 90

.

Achasov-Ivanchenko 89

13

 10^{-5}

Nussinov-Truong 89

10⁻⁶

Oller 03

Oller 98 Close et al. 93

- EXCLUDED

Lucio-Pestieau 90

10 -7

1040 MeV

$$Br(\phi \rightarrow K^0 \overline{K}^0 \gamma) < 1.9 \times 10^{-8} @ 90\% C.L$$

• Consistency check: using the KLOE couplings from $\phi \rightarrow \pi \pi \gamma$, $\eta \pi^0 \gamma$ in the Kaon Loop model

 $\Rightarrow \operatorname{Br}(\phi \to \operatorname{K}^{0}\overline{\operatorname{K}}^{0}\gamma) = 4 \times 10^{-9} - 6.8 \times 10^{-8}$

KLOE-2 sensitivity
 (with Inner Tracker) ⇒ 0.5×10⁻⁸
 ⇒ First observation possible

P.Gauzzi

Pseudoscalar mesons

- ϕ -factory \Rightarrow large samples of η and η'
- $L = 2.5 \text{ fb}^{-1} \Rightarrow 8 \times 10^9 \phi \Rightarrow \sim 10^8 \eta$ $\Rightarrow \sim 5 \times 10^5 \eta'$
- η/η' mixing and η' gluonium content
- Dynamics of $\eta \rightarrow \pi \pi \pi$ decay
- Rare η decays $(\eta \rightarrow \pi^+ \pi^- e^+ e^-, \eta \rightarrow \pi^+ \pi^- \gamma, \eta \rightarrow e^+ e^- e^+ e^-)$

Mixing η/η'

•
$$\phi \rightarrow \eta' \gamma; \eta' \rightarrow \eta \pi^+ \pi^-; \eta \rightarrow \pi^0 \pi^0 \pi^0$$

 $\eta' \rightarrow \eta \pi^0 \pi^0; \eta \rightarrow \pi^+ \pi^- \pi^0$
• $\phi \rightarrow \eta \gamma; \eta \rightarrow \pi^0 \pi^0 \pi^0$

$$\mathbf{R} = \frac{\mathbf{Br}(\phi \to \eta' \gamma)}{\mathbf{Br}(\phi \to \eta \gamma)} = (4.77 \pm 0.09 \pm 0.19) \times 10^{-3}$$

[systematics dominated by $\delta Br(\eta' \rightarrow \eta \pi \pi) = 3\%$]

 \Rightarrow Br($\phi \rightarrow \eta' \gamma$) = (6.20±0.11±0.15)×10⁻⁵

• Pseudoscalar mixing angle: $(|q\overline{q}\rangle = \frac{1}{\sqrt{2}} (|u\overline{u}\rangle + |d\overline{d}\rangle))$ $\eta = \cos \varphi_{P} |q\overline{q}\rangle - \sin \varphi_{P} |s\overline{s}\rangle$ $\eta' = \sin \varphi_{P} |q\overline{q}\rangle + \cos \varphi_{P} |s\overline{s}\rangle$

$$\mathbf{R} = \cot^2 \varphi_{\mathbf{P}} \left(1 - \frac{\mathbf{m}_{\mathbf{s}}}{\overline{\mathbf{m}}} \cdot \frac{\mathbf{C}_{\mathbf{NS}}}{\mathbf{C}_{\mathbf{S}}} \cdot \frac{\tan \varphi_{\mathbf{V}}}{\sin 2\varphi_{\mathbf{P}}} \right)^2 \cdot \left(\frac{\mathbf{p}_{\mathbf{\eta}'}}{\mathbf{p}_{\mathbf{\eta}}} \right)^3$$

 $\varphi_{\rm P} = (41.4 \pm 0.3 \pm 0.9)^{\circ} \Rightarrow \vartheta_{\rm P} = (-13.3 \pm 0.3 \pm 0.9)^{\circ} |_{\rm ng}$

Final state: $\pi^{+}\pi^{-} + 7 \gamma$ $L = 427 \text{ pb}^{-1}$ $N_{\eta'\gamma} = 3407 \pm 61 \pm 43 \text{ ev.}$ $N_{\eta\gamma} = 16.7 \times 10^{6} \text{ ev.}$

Inv.mass of $\pi^+\pi^-$ + 6 γ out of 7

[PLB648(2007)267]

η^\prime gluonium content

$\eta' = \mathbf{X}_{\eta'} \mathbf{q}\overline{\mathbf{q}}\rangle + \mathbf{Y}_{\eta'} \mathbf{s}\overline{\mathbf{s}}\rangle + \mathbf{Z}_{\eta'} \mathbf{c} $	\mathbf{G} New fit:	$\mathbf{R} = \cot^2 \varphi_{\rm P} \cos^2 \varphi_G \left(1 \right)$	$1 - \frac{m_s}{\overline{m}} \cdot \frac{C_{NS}}{C_S} \cdot \frac{ta}{sin}$	$\frac{\mathbf{n}\varphi_{\mathrm{V}}}{\mathbf{n}^{2}\varphi_{\mathrm{P}}}\right)^{2} \cdot \left(\frac{\mathbf{p}_{\eta'}}{\mathbf{p}_{\eta}}\right)^{3}$
$\mathbf{X}_{\mathbf{\eta}'} = \mathbf{\cos}\varphi_{\mathbf{G}}\mathbf{\sin}\varphi_{\mathbf{P}}$ $\mathbf{Y}_{\mathbf{\eta}'} = \mathbf{\cos}\varphi_{\mathbf{G}}\mathbf{\cos}\varphi_{\mathbf{P}}$	$\frac{\Gamma(\eta' \to \gamma \gamma)}{\Gamma(\pi^0 \to \gamma \gamma)},$	$\frac{\Gamma(\eta' \to \rho \gamma)}{\Gamma(\omega \to \pi^0 \gamma)}, \frac{\Gamma(\eta' \to \omega)}{\Gamma(\omega \to \pi^0 \gamma)}$	$\frac{\gamma}{\gamma}, \frac{\Gamma(\omega \to \eta \gamma)}{\Gamma(\omega \to \pi^0 \gamma)}$	$\overline{)}^{,}$ PDG08+
$Z_{\eta'} = \sin \varphi_{G}$ [Rosner PRD27(1983) 1101, Kou PRD63(2001)54027]	$\frac{\Gamma(\rho \to \eta \gamma)}{\Gamma(\omega \to \pi^0 \gamma)}, \frac{\Gamma(\phi - \eta \gamma)}{\Gamma(\omega - \eta \gamma)}$	$\frac{\rightarrow \eta \gamma)}{\rightarrow \pi^0 \gamma)}, \frac{\Gamma(\phi \rightarrow \pi^0 \gamma)}{\Gamma(\omega \rightarrow \pi^0 \gamma)},$	$\frac{\Gamma(K^{*+} \to K^{+})}{\Gamma(K^{*0} \to K^{0})}$	$\frac{\gamma}{\gamma} \int \mathbf{KLOE} \omega \rightarrow \pi^0 \gamma$

	φ _P (°))		
n	5 38 40 42 44	4 <u>6</u>	48	 50
0.05				
0.1	<u>Γ</u> (η'→	ργ)/Γ(ω→π ⁰	Ø
0.15				
0.2	$= \Gamma(\eta' \to \omega \gamma) / \Gamma(\omega \to \pi^0 \gamma)$			
0.25				
0.3				
0.35		<i>и</i> г (л	10	1
0.4			1000	
0.45		<u></u> w~ <i>n</i>	0	
$Z_{n'}^{2} = 0.5$	$\Gamma(\phi \to m' \alpha) \Gamma(\phi \to m \alpha) = \Gamma(\phi \to m \alpha) \Gamma(\phi \to m \alpha) \Gamma(\phi \to m \alpha) \Gamma(\phi \to m \alpha) \Gamma(\phi \to m \alpha)$	(m) > =	0.0	٦

PLB648 New fit $Z_{\eta} \cdot^2$ 0.12 ± 0.04 0.14 ± 0.04 $\varphi_{\mathbf{P}}$ (deg.) 40.4 ± 0.6 39.7 ± 0.7 **C**_{NS} 0.94 ± 0.03 0.91 ± 0.05 Cs 0.83 ± 0.05 0.89 ± 0.07 $\phi_{\mathbf{V}}$ (deg.) 3.32 ± 0.10 3.2 1.24 ± 0.07 1.24 ± 0.07 m_s/m χ^2/ndf 4.6/3 1.42/2 $P(\chi^2)$ 20% 49%

KLOE-2: by measuring the main η' Br's @ 1% \Rightarrow statistical significance of $Z_{\eta'}^2$ will increase to $4 - 5 \sigma$

[JHEP07(2009)105]

•
$$\eta \rightarrow \pi \pi \pi$$
 decay \Rightarrow Isospin violation $L_{I} = -\frac{1}{2}(m_{u} - m_{d})(\overline{u}u - \overline{d}d)$

 $\phi \rightarrow \eta \gamma; \eta \rightarrow \pi^+ \pi^- \pi^0 \Rightarrow \pi^+ \pi^- + 3\gamma$ (E_{yrec} = 363 MeV) 450 pb⁻¹ \Rightarrow 1.34 × 10⁶ events in the Dalitz plot

$$X = \sqrt{3} \frac{E_{+} - E_{-}}{Q}; Y = 3 \frac{E_{0} - m_{0}}{Q}$$
$$(Q = m_{\eta} - 2m_{\pi^{\pm}} - m_{\pi^{0}})$$

c, *e* compatible with zero (C violation)
fit without cubic term (*f*Y³) ⇒ P(χ²) ~ 10⁻⁶

а	$-1.090 \pm 0.005 ^{+0.008} - 0.019$
b	$0.124 \pm 0.006 \pm 0.010$
С	$0.002 \pm 0.003 \pm 0.001$
d	$0.057 \pm 0.006 ^{+0.007}_{-0.016}$
е	$-0.006 \pm 0.007 ^{+0.005}_{-0.003}$
f	$0.14 \pm 0.01 \pm 0.02$
$P(\chi^2)$	73%

• Symmetric Dalitz plot: $|A|^2 \propto 1 + 2 \alpha Z \implies$ only one parameter

 $Z = \frac{2}{3} \sum_{i=1}^{3} \left(\frac{3E_i - M_{\eta}}{M_{\eta} - 3M_{\pi}} \right)^2 = \frac{\rho^2}{\rho_{max}^2} \qquad (\rho = \text{distance from the Dalitz plot center})$

- Binned likelihood fit, normalizing the data to MC density (pure phase-space in MC \Rightarrow |A|² =constant)
- 450 pb⁻¹ \Rightarrow 6.5 ×10⁵ events $\alpha = -0.027 \pm 0.004 \pm 0.006$ [KLOE'07, arXiv:0707.4137v1]
- New analysis:

 $\alpha = -0.0301 \pm 0.0035^{+0.0022}_{-0.0036}$

Alternative parametrization of the $\eta \rightarrow \pi^+ \pi^- \pi^0$ Dalitz plot with final state $\pi\pi$ rescattering

$$\Rightarrow \alpha = -0.038 \pm 0.003^{+0.012}_{-0.008}$$

 $\eta \rightarrow \pi^+ \pi^- e^+ e^-$

- **Rare decay:** χ**PT and** VDM predictions \Rightarrow Br ~ 3 × 10⁻⁴
- 2 measurements: CMD-2 4 events WASA@CELSIUS 16 events
- Data sample: 1.73 fb⁻¹
- $M(\pi^+\pi^-e^+e^-)$ distribution: fit with signal + background (MC) \Rightarrow 1555 ± 52 signal events 368 background 66

Br($\eta \rightarrow \pi^+ \pi^- e^+ e^-(\gamma)$) = (26.8 ± 0.9 ± 0.7) × 10⁻⁵

[PLB675(2009)283]

P.Gauzzi

PHIPSI09 – 13/10/2009 - Beijing

19

• Non conventional CP violation mechanism (non CKM) proposed [D.N.Gao MPLA17(2002)]

Interference between electric and magnetic decay amplitudes

- Study of the box anomaly
- Existing data: low statistics and not acceptance corrected CLEO results ⇒ 3 σ from previous experiments
- KLOE data sample: 6×10⁵ events in 1.2 fb⁻¹ Simultaneous fit

$\Gamma(\eta \rightarrow \pi^+\pi^-\gamma) / \Gamma(\eta \rightarrow \pi^+\pi^-\pi^0)$

value	events	author	year
0.203 ± 0.008	PDG average		
0.175 ± 0.007 ± 0.006	859	Lopez	2007
0.209 ± 0.004	18 k	Thaler	1973
0.201 ± 0.006	7250	Gormley	1970

Preliminary result:

 $\eta \rightarrow e^+ e^- e^+ e^-$

• KLOE: 413 ± 31 events \Rightarrow first evidence

- Important results have been achieved by KLOE in light meson spectroscopy
- Scalars:
 - Precision measurements of $Br(\phi \rightarrow f_0(980)\gamma)$ and $Br(\phi \rightarrow a_0(980)\gamma)$
 - Scalar resonance parameters extracted from fits
 - Upper limit for $\phi \rightarrow (f_0/a_0)\gamma \rightarrow K^0 \overline{K}^0 \gamma$
- Pseudoscalars:
 - 3 σ evidence of gluonium in $\eta^\prime\,$ (according to Rosner parametrization)
 - Dalitz plot of $\eta \rightarrow 3\pi$
 - Rare decays: $\eta \rightarrow \pi^+\pi^-e^+e^-, \eta \rightarrow \pi^+\pi^-\gamma, \eta \rightarrow e^+e^-e^+e^-$
 - Other analyses in progress: $\eta \rightarrow \pi^0 \gamma \gamma$, $\eta \rightarrow \mu^+ \mu^-$
- DAΦNE upgrade KLOE 2: possibility of new and more precise measurements in hadron spectroscopy

Spare slides

P.Gauzzi

 $e^+e^- \rightarrow \pi^0\pi^0\gamma$: $f_0(980)$

(σ with fixed parameters),

"No structure" with $f_0(980)$ only

600) fixed parameters : hasov,Kiselev,PRD73(2006)054029] $_{\sigma}$ =462 MeV; Γ_{σ} =286 MeV _{ок+к-}=0.5 GeV $\mathbf{g}_{\sigma\pi+\pi-} = 2.4 \text{ GeV}$

+0.01 +0.04 +0.05 -0.03(fit)-0.02(syst) -0.06(mod)

			1 🔁
$f_0(980)$ param.	KL model	NS model	2
M _{f0} (MeV)	976.8 ± 0.3 ^{+10.1} _{-0.6}	$984.7 \pm 0.4^{+2.4}_{-3.7}$	
$g_{\phi f \gamma}$ (GeV-1)	$2.78^{+0.02}_{-0.05}^{+1.32}_{-0.05}$	$2.61 \pm 0.02^{+0.31}_{-0.08}$	0.1 0.1 0
$g_{f\pi+\pi-}$ (GeV)	$-1.43 \pm 0.01^{+0.03}_{-0.60}$	$1.31 \pm 0.01^{+0.09}_{-0.03}$	
g _{fK+K-} (GeV)	$3.76 \pm 0.04 + 1.17_{-0.49}$	$0.40 \pm 0.04^{+0.62}_{-0.29}$	σ(
$(g_{fK+K-}/g_{f\pi+\pi})^2$	~ 6.9	~ 0.09	M
$P(\gamma^2)$	14.5 %	4.2 %	ן g

 $|\mathbf{Br}(\phi \to \mathbf{S}\gamma \to \pi^0 \pi^0 \gamma) = (\mathbf{1.07}_{-0.03}^{+0.01})$

• KL fit without $\sigma(600) \implies P(\chi^2) \rightarrow 10^{-4}$

• Data sample: 450 pb⁻¹ $\Rightarrow \sim 4 \times 10^5$ events

• Two contributions: $\phi \rightarrow S\gamma$ and $e^+e^- \rightarrow \omega \pi^0$

P.Gauzzi

25

Fit result - KL

Best fit shown in $M_{\pi\pi}$ slices $\chi^2/ndf = 2754 / 2676$ $P(\chi^2) = 14.5 \%$

Bad quality fit without $\sigma(600)$ $P(\chi^2) \rightarrow 10^{-4}$

Fit result - NS

Fit results

P.Gauzzi

28

π

FSR

π

ρπ

+

F-B asymmetry

 $C_{\pi\pi}$ = +1

• $f_0(980)$ evidence at M($\pi\pi$) \approx 980 MeV

• Simulation with f_0 and σ parameters from $\pi^0\pi^0\gamma$ analysis

[Pancheri, Shekhovtsova Venanzoni, arXiv0706.3027]

 Recent analysis by A.Gallegos et al. [arXiv:0908]:
 comparison of KLOE data with 4 different models: KL, RχPT, UχPT and LσM P.Gauzzi

Fit of M($\pi^+\pi^-$)

 $\frac{d\sigma}{dm} = (ISR) + (FSR) + (\rho\pi) + (scalar) + (scalar - FSR \text{ interf.})$

- **ISR: pion FF** ($\rho + \omega + \rho'$) [Kühn-Santamaria ZPC48 (1990) 455]
 - Free parameters: $M_{\rho 0}$, $\Gamma_{\rho 0}$, α , β (sizes of ω and ρ' contributions)
 - ω and ρ' masses and widths fixed
- FSR fixed [Achasov,Gubin,Solodov PRD55(1997)2672)]
- $\rho \pi: (\phi \rightarrow \rho^{\pm} \pi^{\mp}; \rho^{\pm} \rightarrow \pi^{\pm} \gamma)$ VDM, a scale factor $(a_{\rho \pi})$ free
- scalar-FSR interference [Achasov-Gubin PRD57 (1998) 1987]
- scalar amplitude: 1. Kaon loop

Free parameters: M_{f0} , g_{fK+K-} , $g_{f\pi+\pi-}$

2. No structure

Free parameters: M_{f0} , g_{fK+K-} , $g_{f\pi+\pi-}$, $g_{\phi f\gamma}$, a_0 , a_1 , b_1

Unfolded $M_{\eta\pi}$ distribution

- To allow better comparison with other experimental results and theoretical models ⇒ unfolding procedure to correct data for detector and resolution effects
- Bayesian unfolding (avoids smearing matrix inversion)
 [G.D'Agostini, NIM A362 (1995), 487]
- Average of the two $M_{\eta\pi}$ distributions

Check of the unfolding result

• Fit the unfolded invariant mass distribution to the Achasov function (without smearing matrix)

*a*₀(980) shape

Instanton model

• "New theory of scalar mesons" ['t Hooft, Maiani et al. PLB662(2008), 424]: instantons provide a mechanism for f_0 (980) $\rightarrow \pi\pi$ independent from mixing with the σ in both hypotheses 4q and qqbar

 $\mathcal{L}_{dec}(S) = c_f O_f(S) + c_I O_1(S)$

Processes	$ $ \mathcal{A}_{t}	$_{ m h}([qq][ar qar q])$		${\cal A}_{ m th}(qar q)$		$\mathcal{A}_{\mathrm{expt}}$
	with inst.	no inst.	best fit	with inst.	no inst.	
$\sigma ightarrow \pi^+\pi^-$	input	input	1.6	input	input	3.22 ± 0.04
$\kappa^+ o K^0 \pi^+$	7.3	7.7	3.3	6.0	5.5	5.2 ± 0.1
$f_0 ightarrow \pi^+\pi^-$	input	[0-1.6]	1.6	input	[0-1.6]	1.4 ± 0.6
$f_0 \rightarrow K^+ K^-$	6.7	6.4	3.5	6.4	6.4	3.8 ± 1.1
$a_0 o \pi^0 \eta$	6.7	7.6	2.7	12.4	11.8	2.8 ± 0.1
$a_0 ightarrow K^+ K^-$	4.9	5.2	2.2	4.1	3.7	2.16 ± 0.04

• Only KLOE data: input g_{f0KK} , $g_{f0\pi\pi}$ + masses + $\phi_P \Rightarrow$ output g_{a0KK} and $g_{a0\eta\pi}$

	KLOE (KL)		[qq][q q]	qq
g _{f0K+K} - (GeV)	3.97 - 4.74		$c_{I} = -2.83.4 \text{ GeV}^{-1}$	$c'_{I} = -3.94.8 \text{ GeV}^{-1}$
$\mathbf{g}_{f0\pi+\pi-}$ (GeV)	-1.822.23	}	$c_f = 20.6 - 24.5 \text{ GeV}^{-1}$	$c'_{f} = 16.5 - 19.7 \text{ GeV}^{-1}$
			Ų	Ų
g _{a 0K+K-} (GeV)	2.01 - 2.15		2.1 - 2.5	2.4 - 2.9
$g_{a0\eta\pi}(\text{GeV})$	2.46 - 2.82		3.3 - 3.9	6.6 - 7.9

1. Kaon loop

[Achasov - Ivanchenko Nucl.Phys.B315(1989)465, Achasov - Gubin Phys.Rev.D63(2001)094007, Achasov - Kiselev Phys.Rev.D73(2006)054029]

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}m} = \frac{2\left|\mathbf{g}(\mathbf{m}^2)\right|^2 \mathbf{p}_{\gamma}(\mathbf{M}_{\phi}^2 - \mathbf{m}^2)}{3(4\pi)^3 \mathbf{M}_{\phi}^3} \left|\frac{\mathbf{g}_{\mathrm{SK}^+\mathrm{K}^+} \mathbf{g}_{\mathrm{SPP}'}}{\mathbf{D}_{\mathrm{S}}(\mathbf{m}^2)}\right|^2$$

2. "No Structure"

[G.Isidori, L.Maiani et al., JHEP0605(2006)049]

$$\frac{d\Gamma}{dm} = \frac{2p_{\gamma}(M_{\phi}^2 - m^2)}{3(4\pi(^2M_{\phi}^3))} \left[\frac{g_{SPP}g_{\phi S\gamma}}{D_S(m^2)} + \frac{a_0}{M_{\phi}^2} + a_1 \frac{m^2 - m_S^2}{M_{\phi}^4} \right]$$

 E_{γ}^{3} behaviour damped by a polynomial term (a_{0} and a_{1} complex)

P.Gauzzi

Dalitz plot fit

- Kaon Loop with $\sigma(600)$: $M_{KL} \propto g(m^2) e^{i\delta_B} \sum_{S,S'=f_0,\sigma} g_{SK\overline{K}} G_{SS'}^{-1} g_{S'\pi\pi}$
 - Free parameters for $f_0(980)$: M_{f0} , g_{fK+K-} , $g_{f\pi+\pi-}$ (= $\sqrt{2} g_{f\pi0\pi0}$)
 - $\delta_B = \delta_B^{\pi\pi} + \delta_B^{KK}$ and $\sigma(600)$ parameters fixed [Achasov-Kiselev,PRD73(2006)054029]
 - $\omega \pi^0 + \phi \rightarrow \rho \pi$ VDM parametrization + interference terms (7 free parameters)
 - "No structure" without $\sigma(600)$
 - Free parameters: M_{f0} , g_{fK+K-} , $g_{f\pi+\pi-}$, $g_{\phi f\gamma}$, a_0 , a_1 , b_1

$$\mathbf{M}_{NS} \propto \frac{e}{4F_{\phi}} \frac{sM_{\phi}^2}{D_{\phi}(s)} \left[\frac{g_{f_0\pi\pi}g_{\phi f_0\gamma}}{D_{f_0}(\mathbf{m}^2)} + \frac{a_0 e^{ib_0 \frac{\mathbf{v}_{\pi}(\mathbf{m})}{\mathbf{m}_{\phi}}}}{m_{\phi}^2} + a_1 e^{ib_1 \frac{\mathbf{v}_{\pi}(\mathbf{m})}{\mathbf{m}_{\phi}}} \frac{\mathbf{m}^2 - \mathbf{m}_{f_0}^2}{\mathbf{m}_{\phi}^4} \right]$$

- Vector amplitude : same parametrization as for KL (7 parameters)

P.Gauzzi

PHIPSI09 - 13/10/2009 - Beijing

Scalar propagator (KL)

[Achasov-Kiselev PRD70(2004)]

$$D_R(m) = m_R^2 - m^2 + \sum_{ab} \left[\text{Re} \Pi_R^{ab}(m_R^2) - \Pi_R^{ab}(m^2) \right]$$

 $m_a \ge m_b, m \ge m_+,$

 $\leq m < m$,

m

$$\Pi_{R}^{ab}(m^{2}) = \frac{g_{Rab}^{2}}{16\pi} \left[\frac{m_{+}m_{-}}{\pi m^{2}} \ln \frac{m_{b}}{m_{a}} + \rho_{ab} \left(i + \frac{1}{\pi} \ln \frac{\sqrt{m^{2} - m_{-}^{2}} - \sqrt{m^{2} - m_{+}^{2}}}{\sqrt{m^{2} - m_{-}^{2}} + \sqrt{m^{2} - m_{+}^{2}}} \right) \right]$$

$$\Pi_{R}^{ab}(m^{2}) = \frac{g_{Rab}^{2}}{16\pi} \left[\frac{m_{+}m_{-}}{\pi m^{2}} \ln \frac{m_{b}}{m_{a}} - |\rho_{ab}(m)| + \frac{2}{\pi} |\rho_{ab}(m)| \arctan \frac{\sqrt{m_{+}^{2} - m^{2}}}{\sqrt{m^{2} - m_{-}^{2}}} \right].$$

$$m \leq m_{-}$$

$$\Pi_{R}^{ab}(m^{2}) = \frac{g_{Rab}^{2}}{16\pi} \left[\frac{m_{+}m_{-}}{\pi m^{2}} \ln \frac{m_{b}}{m_{a}} - \frac{1}{\pi} \rho_{ab}(m) \ln \frac{\sqrt{m_{+}^{2} - m^{2}} - \sqrt{m_{-}^{2} - m^{2}}}{\sqrt{m_{+}^{2} - m^{2}} + \sqrt{m_{-}^{2} - m^{2}}} \right].$$

• Scalar propagator with finite width corrections: $[a,b=\pi\pi, K^{+}K^{-}, K^{0}\overline{K}^{0}, \eta\eta, \eta\eta', \eta'\eta' \text{ for } f_{0}(980);$ $=\eta\pi^{0}, K^{+}K^{-}, K^{0}\overline{K}^{0}, \eta'\pi^{0} \text{ for } a_{0}(980)]$

P.Gauzzi

PHIPSI09 – 13/10/2009 - Beijing

2. "No Structure" [G.Isidori, L.Maiani et al., JHEP0605(2006)049]

 The scalar is a BW with energy-dependent width, taking into account for K⁺K⁻, K⁰K⁰ threshold opening (Flatte' formula)

• 600 pb⁻¹ with
$$1000 < \sqrt{s} < 1030 \text{ MeV}$$

• Interference with $\phi \rightarrow \omega \pi^0$ (OZI and G-parity viol.)

 $e^+e^- \rightarrow \omega \pi^0$

 $\sigma_{\rm vis}(\sqrt{s}) = \sigma_{\rm nr}(\sqrt{s}) \left(1 - Z \frac{M_{\phi} \Gamma_{\phi}}{D_{\phi}(\sqrt{s})}\right)$

$$\boldsymbol{\sigma}_{\rm nr}(\sqrt{\rm s}) = \boldsymbol{\sigma}_0 + \boldsymbol{\sigma}' \cdot (\sqrt{\rm s} - {\rm M}_{\phi})$$

$e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$	$e^+e^- \rightarrow \pi^0 \pi^0 \gamma$
$7.89 \pm 0.06 \pm 0.07$	$0.724 \pm 0.010 \pm 0.003$
$0.106 \pm 0.007 \pm 0.004$	$0.011 \pm 0.015 \pm 0.006$
$-0.103 \pm 0.004 \pm 0.003$	$-0.154 \pm 0.007 \pm 0.004$
$0.064 \pm 0.003 \pm 0.001$	$0.0053 \pm 0.0005 \pm 0.0002$
	$e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ 7.89 ± 0.06 ± 0.07 0.106 ± 0.007 ± 0.004 -0.103 ± 0.004 ± 0.003 0.064 ± 0.003 ± 0.001

• From $\sigma_0(\pi^0\gamma)/\sigma_0(\pi^+\pi^-\pi^0)$ (with rare Br's from PDG)

Br($\omega \rightarrow \pi^+ \pi^- \pi^0$) = (90.24 ± 0.19)%

Br($\omega \rightarrow \pi^0 \gamma$) = (8.09 ± 0.14)% (~3 σ from PDG) (8.92 ± 0.24)%

 \Rightarrow Br($\phi \rightarrow \omega \pi^0$) = (4.4 ± 0.6) ×10⁻⁵ _{)9 - 13/10/2009 - Beijing}

 $\eta \rightarrow \pi^+ \pi^- \pi^0$

• Asymmetries ⇔ C violation

• All asymmetries compatible with zero at 10⁻³ level

P.Gauzzi

42

$\eta \rightarrow \pi^0 \pi^0 \pi^0$: fit procedure

The fit is done using a binned likelihood approach

We obtain an estimate of α by minimizing

$$-\sum_{i}n_{i}\log(\mathbf{v}_{i}(\alpha))$$

Where:

- **n**_i = recostructed events
- v_i = for each MC event (according pure phase space):
- ✓ Evaluate its z_{true} and its z_{rec} (if any!)
- $\checkmark\,$ Enter an histogram with the value of z_{rec}
- ✓ Weight the entry with $1 + 2 \alpha z_{true}$
- ✓ Weight the event with the fraction of combinatorial background, for the signal (bkg) if it has correct (wrong) pairing

 $\eta \rightarrow \pi^{\nu}\gamma\gamma$

η**→**⁄

η mass measurement

• 8 σ discrepancy: GEM (COSY) \Rightarrow $M_{\eta} = 547.311 \pm 0.028 \pm 0.032$ MeV

$$(p+d \rightarrow {}^{3}He+\eta)$$

 $NA48 \Rightarrow M_n = 547.843 \pm 0.030 \pm 0.041 \text{ MeV}$

 $(\pi^- + p \rightarrow \eta + n \text{ with } \eta \rightarrow 3\pi^0)$

- Recent CLEO-c measurement: $M_{\eta} = 547.785 \pm 0.017 \pm 0.057 \text{ MeV} (\psi' \rightarrow J/\psi \eta)$
- KLOE: $\phi \rightarrow \eta \gamma$; $\eta \rightarrow \gamma \gamma$ check with $\phi \rightarrow \pi^0 \gamma$; $\pi^0 \rightarrow \gamma \gamma$

η mass measurement

• 8 σ discrepancy: GEM (COSY) \Rightarrow M_{η} = 547.311 ± 0.028 ± 0.032 MeV

$$(p + d \rightarrow {}^{3}He + \eta)$$

 $NA48 \Rightarrow M_n = 547.843 \pm 0.030 \pm 0.041 \text{ MeV}$

 $(\pi^- + p \rightarrow \eta + n \text{ with } \eta \rightarrow 3\pi^0)$

- Recent CLEO-c measurement: $M_{\eta} = 547.785 \pm 0.017 \pm 0.057 \text{ MeV} (\psi' \rightarrow J/\psi \eta)$
- KLOE: $\phi \rightarrow \eta \gamma$; $\eta \rightarrow \gamma \gamma$ check with $\phi \rightarrow \pi^0 \gamma$; $\pi^0 \rightarrow \gamma \gamma$

