

$\gamma\gamma$ interactions with KLOE

Federico Nguyen INFN Roma TRE for the KLOE Collaboration Beijing - October, 14th 2009

Outline

motivations for studying γγ events:
 assessment of scalar and pseudoscalar mesons
 through electromagnetic properties

> observation of $\gamma\gamma \rightarrow \eta \rightarrow \pi^+\pi^-\pi^0$ events at DAPNE

> study of $\gamma\gamma \rightarrow \pi^0\pi^0$ events, search for $\gamma\gamma \rightarrow \sigma$

conclusions

 $e^+e^- \rightarrow e^+e^- X$ or $\gamma\gamma$ interactions

Comparison btw W.W. and phase space

 θ < 5° for final state e⁺e⁻ 2) impact at the % level within cuts

Pseudoscalar and scalar mesons

The f_(600) or σ case

6

fo(600) BREIT-WIGNER MASS OR K-MATRIX POLE PARAMETERS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
(400-1200) OUR E	STIMATE				
513±32	²⁶ MURAMAT	SU 02	CLEO	e^+e^-pprox 10 GeV	
•••We do not u	se the following da	ta for av	erages,	fits, limits, etc. 🔹 🔹 🔹	
$478^{+24}_{-23}\pm 17$	AITALA	01в	E791	$D^+ \rightarrow \pi^- \pi^+ \pi^+$	
563 + 58 - 29	²⁷ ISHIDA	01		$\Upsilon(3S) \rightarrow \Upsilon \pi \pi$	
555	²⁸ ASNER	00	CLE2	$\tau^- \rightarrow \pi^- \pi^0 \pi^0 \nu_{\tau}$	
$540\!\pm\!36$	ISHIDA	00B		$p \overline{p} \rightarrow \pi^0 \pi^0 \pi^0$	

CLEO 02: $D^0 \rightarrow K_S \pi^+ \pi^-$ Dalitz analysis

fo(600) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT	ID	TECN	COMMENT
(600-1000) OUR	STIMATE			
$335\pm$ 67	37 MURAMAT	SU 02	CLEO	e^+e^-pprox 10 GeV
•••We do not ι	ise the following da	ta for av	erages,	fits, limits, etc. • • •
324^+ $^{42}_{40}\pm 21$	AITALA	01B	E791	$D^+ \rightarrow \ \pi^- \pi^+ \pi^+$
372^{+229}_{-95}	³⁸ ISHIDA	01		$\Upsilon(3S) \rightarrow \Upsilon \pi \pi$
540	³⁹ ASNER	00	CLE2	$\tau^- \rightarrow \pi^- \pi^0 \pi^0 \nu_{\tau}$
$372\pm$ 80	ISHIDA	00B		$p\overline{p} \rightarrow \pi^0 \pi^0 \pi^0$
372± 80	ISHIDA	00B	CLE2	$p \overline{p} \to \pi^0 \pi^0 \pi^0$

data come from Dalitz plot analyses, using Breit-Wigner or T-matrix fits

$f_0(600)$ T-MATRIX POLE \sqrt{s}

Note that $\Gamma \approx 2 \text{ Im}(\sqrt{s_{\text{pole}}})$.

ALUE (MeV)	DOCUMENT ID		TECN	COMMENT
400-1200)-i(250-500) OUR ES	TIMATE			
• • We do not use the following	g data for averages,	fits,	limits, et	tc. • • •
$455 \pm 6^{+31}_{13}) - i(278 \pm 6^{+34}_{43})$	¹ CAPRINI	08	RVUE	Compilation
$463 \pm 6 + \frac{131}{17} - i(259 \pm 6 + \frac{33}{34})$	² CAPRINI	08	RVUE	Compilation
$552 + \frac{84}{106} - i(232 + \frac{81}{72})$	³ ABLIKIM	07A	BES2	$\psi(2S) \rightarrow \pi^+ \pi^- J/\psi$
$466 \pm 18) - i(223 \pm 28)$	⁴ BONVICINI	07	CLEO	$D^+ \rightarrow \pi^- \pi^+ \pi^+$
484 \pm 17) $-i(255 \pm$ 10)	GARCIA-MAR	07	RVUE	Ke4
$441 + \frac{16}{8} - i(272 + \frac{9}{125})$	⁵ CAPRINI	06	RVUE	$\pi\pi \rightarrow \pi\pi$
$470 \pm 50) - i(285 \pm 25)$	⁶ ZHOU	05	RVUE	
$541 \pm 39) - i(252 \pm 42)$	⁷ ABLIKIM	04A	BES2	$J/\psi \rightarrow \omega \pi^+ \pi^-$
$528 \pm 32) - i(207 \pm 23)$	⁸ GALLEGOS	04	RVUE	Compilation
$440 \pm 8) - i(212 \pm 15)$	⁹ PELAEZ	04A	RVUE	$\pi\pi \rightarrow \pi\pi$
$533 \pm 25) - i(247 \pm 25)$	10 BUGG	03	RVUE	
32 - <i>i</i> 272	BLACK	01	RVUE	$\pi^0 \pi^0 \rightarrow \pi^0 \pi^0$
$470 \pm 30) - i(295 \pm 20)$	⁵ COLANGELO	01	RVUE	$\pi\pi ightarrow \pi\pi$
$535 + \frac{48}{36} - i(155 + \frac{76}{53})$	11 ISHIDA	01		$\Upsilon(35) \rightarrow \Upsilon \pi \pi$
$10 \pm 14 - i620 \pm 26$	¹² SUROVTSEV	01	RVUE	$\pi\pi \rightarrow \pi\pi, K\overline{K}$
$558^{+34}_{27}) - i(196^{+32}_{41})$	ISHIDA	00B		$p \overline{p} \rightarrow \pi^0 \pi^0 \pi^0$

The case of $e^+e^- \rightarrow e^+e^-\eta$

interests on the transition form factors for LbyL contributions (A. Nyffeler, J.Prades) to g-2...but need more statistics \rightarrow KLOE-2 (see G. Venanzoni)

29

34.6

 q_2

$$\sigma_{\gamma\gamma \to R}(q_1, q_2) \propto \Gamma_{R \to \gamma\gamma} \frac{8\pi^2}{M_R} \delta((q_1 + q_2)^2 - M_R^2) |F(q_1^2, q_2^2)|^2$$

 $BR(\eta \rightarrow \pi^{+}\pi^{-}\pi^{0}) = 22.73\%$

e+e- -> ηγ background

major issue:

$\gamma\gamma$ interactions at DAPNE

- \checkmark data collected at \sqrt{s} = 1 GeV (see S. Müller), suppressed ϕ decays
- \checkmark instant luminosity = 7×10³¹ cm⁻² s⁻¹, $\int Ldt \sim 250 \text{ pb}^{-1}$
- ✓ data processing with dedicated filter:
 - at least 2 photons with energy > 15 MeV, acceptance 20°-160°
 - the most energetic photon with energy > 50 MeV
 - total calorimetric energy 200 MeV < E_{calo} < 900 MeV

•
$$\mathbf{R} = (\sum_{\gamma} \mathbf{E}_{\gamma}) / \mathbf{E}_{calo} > 0.3$$

Selection of $e^+e^- \rightarrow e^+e^-\pi^+\pi^-\pi^0$ events

✓ 2 tracks w/ opposite charge ✓ 2 and only 2 γ from the π^0 decay → imposes the $\eta\gamma$ photon (E_{γ} ~ 350 MeV) to be lost in the beam pipe ✓ kinematic fit χ^2_{η} based on Lagrange multipliers

 \checkmark for $\eta\gamma$ events, η system constrained in a small cone around $p_L\sim 350$ MeV and with $M_{miss}\sim 0$

$$M_{miss}^{2} \approx s + M_{\eta}^{2} - 2E_{T}\sqrt{s} - \frac{p_{L}^{2}}{E_{T}}\sqrt{s}$$
$$E_{T} = \sqrt{p_{T}^{2} + M_{\eta}^{2}} \approx M_{\eta}$$

 $\chi^{2}_{\eta}: \begin{array}{l} 5 \text{ variables } \times 2\gamma \\ 4 \text{ constraints} \end{array}$ $\boxed{\begin{array}{c} m^{2}_{\gamma\gamma} = m^{2}_{\pi0} \\ m^{2}_{\pi+\pi-\gamma\gamma} = m^{2}_{\eta} \\ t_{\gamma} - |\underline{r}_{\gamma}| / c = 0 \quad \text{for } 2\gamma \end{array}}$

from 239.6 pb⁻¹ 1576 events survive selection

$e^+e^- \rightarrow e^+e^-\pi^+\pi^-\pi^0$: efficiencies and background

signal: $\varepsilon_{global} = 20\%$

 $e^+e^- \rightarrow e^+e^-\pi^+\pi^-\pi^0$: fit method $L = \prod_{i} P(\mathbf{d}_{i} | \mathbf{w}_{S} \mathbf{S}_{i} + \mathbf{w}_{B} \mathbf{B}_{i}) P(\mathbf{s}_{i} | \mathbf{S}_{i}) P(\mathbf{b}_{i} | \mathbf{B}_{i}) \rightarrow \chi_{\text{fit}}^{2} = -2 \ln L$ *parameters generated MC statistics*

background yields constrained by present knowledge on cross sections

 $e^+e^- \rightarrow e^+e^-\pi^+\pi^-\pi^0$: preliminary result

	signal	$\eta\gamma$	$\omega \pi^0$	$\pi^+\pi^-\pi^0$	K^+K^-	$K_S K_L$	$e^+e^-\gamma$
range variation	free	$\pm 15\%$	$\pm 1\%$	$\pm 7\%$	$\pm 25\%$	± 15	free
$N_{fit}(p_L)$	646	442	87	101	46	14	286
$N_{fit}(M_{miss}^2)$	625	442	87	101	46	14	303

 $e^+e^- \rightarrow e^+e^-\pi^+\pi^-\pi^0$: preliminary result $\pi^+\pi^-\pi^0$ $\omega \pi^0$ $K^+K^$ $e^+e^-\gamma$ $K_S K_L$ signal $\eta\gamma$ range variation $\pm 15\%$ $\pm 1\%$ $\pm 7\%$ $\pm 25\%$ ± 15 free free 87 $N_{fit}(p_L)$ 646 442 101 46 14 286 $N_{fit}(M_{miss}^2)$ 625 87 303 442 101 46 14

 $e^+e^- \rightarrow \eta\gamma \rightarrow \pi^+\pi^-\pi^0\gamma$

Search for $e^+e^- \rightarrow e^+e^-\pi^0\pi^0$

Identification of the $2\pi^0$ signal

- 4 γ with energy > 15 MeV, in acceptance
- no tracks

$e^+e^- \rightarrow e^+e^-\pi^0\pi^0$: analysis cuts

$e^+e^- \rightarrow e^+e^-\pi^0\pi^0$: background shapes

$e^+e^- \rightarrow e^+e^-\pi^0\pi^0$: expected background yields

	e	σ (nb)	$n=\epsilon L\sigma$	n/10188
$K_S K_L$	$5.60 imes10^{-3}$	2.0	2 682	0.26
$\eta \to 3\pi^0$	1.79×10^{-3}	0.33	142	0.014
$\omega \pi^0$	1.55×10^{-2}	0.55	2 045	0.2
$f_0 \rightarrow 2\pi^0$	2.58×10^{-2}	0.17	1 052	0.10
$a_0 \rightarrow \eta \pi^0$	4.55×10^{-3}	0.11	120	0.012
$e^+e^- \to \gamma\gamma$	1.92×10^{-5}	360	166	0.016
$\eta ightarrow \gamma \gamma$	1.57×10^{-4}	0.39	15	0.0014

from 239.6 pb-1 10188 events after selection

- bkgrs' sum

we observe a clear evidence of $e^+e^- \to e^+e^-\pi^0\pi^0$ events at low $M^{}_{_{4\nu}}$

the precise yield estimate depends on assumptions for the background processes

$e^+e^- \rightarrow e^+e^-\pi^0\pi^0$: expected background yields

Conclusions

 \checkmark unambiguous signature of both $\gamma\gamma \rightarrow \eta$ and $\gamma\gamma \rightarrow \pi^0\pi^0$ events, without any tagger and at \sqrt{s} = 1 GeV

✓ γγ-> η observed through the e⁺e⁻→ e⁺e⁻η process, with the η → $\pi^+\pi^-\pi^0$ channel

 \checkmark collected statistics allows to measure $\Gamma_{_{\gamma\gamma}}(\eta)$ with accuracy comparable with existing measurements

✓ an exploratory research shows a structure (~ 4000 events) in the 4 γ invariant mass, where the process e⁺e⁻ → e⁺e⁻ σ → e⁺e⁻ $\pi^0 \pi^0$ is expected

✓ studies are under way to describe the $e^+e^- \rightarrow e^+e^- \pi^0 \pi^0$ differential cross section to understand the σ meson contribution

KLOE and DAPNE

 \checkmark data collected at \sqrt{s} = 1 GeV, suppressed ϕ decays

 \checkmark instant luminosity = 7×10³¹ cm⁻² s⁻¹, $\int L dt$ = 239.6 pb⁻¹

Calorimeter, EmC: Pb/Scint. Fiber, 4880 PMTs 98% of solid angle

 $\sigma_{E} / E = 0.057 / \sqrt{E} \text{ (GeV)}$ $\sigma_{t} = 57 \text{ ps} / \sqrt{E} \text{ (GeV)} \oplus 50 \text{ ps}$ $\sigma_{\perp} = 1.3 \text{ cm}$

> both detectors w/ trigger decision

Drift Chamber, DC: 4 m \emptyset × 3.3 m length 90% He, 10% *i*-C₄H₁₀ 12582 stereo sense wires

$$\sigma_p / p = 0.4\% \text{ for } \theta > 45^\circ$$

$$\sigma_{r\varphi} = 0.150 \text{ mm, } \sigma_z = 2 \text{ mm}$$

$$\sigma(m_{\pi\pi}) \sim 1 \text{ MeV}$$

 \checkmark no e[±] tagging device

The model for the σ produced in $\gamma\gamma$ (I)

The model for the σ produced in $\gamma\gamma$ (II)

1) the $\sigma_{\gamma\gamma}$ coupling is parameterized by a similar dynamics, i. e. the breaking of the diquark shells into 2 ordinary $q\overline{q}$, but <u>vector</u> mesons, again the coupling A

2) the vector meson-photon transition is described by the standard VMD

> This is why we use again A on the 2-photon vertex. The SU₃ of vectors Vⁱ₁ is assumed to be controlled by the same coupling,

$$\mathbf{V} = \begin{pmatrix} \frac{1}{\sqrt{2}}\rho^{0} + \frac{1}{\sqrt{2}}\omega & \rho^{+} & K^{*+} \\ \\ \rho^{-} & -\frac{1}{\sqrt{2}}\rho^{0} + \frac{1}{\sqrt{2}}\omega & K^{*0} \\ \\ \\ K^{*-} & \bar{K}^{*0} & \phi \end{pmatrix}$$

Spares

Federico Nguyen 14-10-2009

24

Comparison btw W.W. and phase space

1) the σ is a bound state made up of 2 diquarks, each diquark being a $[qq]_{\mathbf{3}_{c},\mathbf{1}_{s},\mathbf{3}_{f}}$

2) the decay into 2 mesons or 2 photons is described by the probability of breaking each diquark shell

> F.N., F. Piccinini & A. Polosa Eur.Phys.J.C47(2006)65

W.W. is reproduced with a cut θ < 5° for both e⁺e⁻ in the final state *Federico Nguyen* 14-10-2009

