Charmonium results from BES

Ronggang PING (For BES Collaboration)

International Workshop on e⁺e⁻ collisions from Phi to Psi

13 - 16 October 2009, IHEP, Beijing

OUTLINE

- Preliminary results from BESII
 - $\psi(2S) \rightarrow \Omega^{-} \overline{\Omega}^{+}$
 - Measurement of $\overline{\Lambda}$ decay parameters
 - Search for CP violation in $J/\psi \to \Lambda \Lambda$
- Preliminary results from BESIII
 - EM transitions
 - h_c physics
 - $\chi_{cJ} \rightarrow \pi^0 \pi^0$, $\eta \eta$
 - Observation of $\chi_{cJ} \rightarrow \phi \phi$, $\omega \omega$, $\phi \omega$
- Summary

Preliminary results from BESII

Data	BESII	CLEOc
J /ψ	58 M	
ψ'	14 M	27 M
ψ"	33 pb-1	818 pb ⁻¹
Continuum	6.4 pb ⁻¹ (√s=3.65 GeV)	21 pb ⁻¹ (√s=3.67 GeV)
	_	A typical event

	Performance
ор/р	1.7%/√1+p²
σ <mark>Ε/Ε</mark>	22% /√E
PartID	dE/dx+TOF
Coverage	80%

in BES detector

 $\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$

 $J/\psi \rightarrow e^+e^-$

First observation of $\psi(2S) \rightarrow \Omega^- \Omega^+$

- Test of pQCD predictive power: gluon spin, quark distribution and helicity conservation
- Except for $\psi(2S) \rightarrow \Omega^{-}\Omega^{+}$, $\psi(2S) \rightarrow B\underline{B}(B=p,\Lambda,\Xi^{-})$ observed by BESII and CLEOc
- Upper limit: <7.3×10⁻⁵@90% C.L. CLEOc:PRD72,051108R(2005)
- This decay mode is thought to be mainly produced from the annihilation of three gluons into ss pair.

Measurement $\overline{\Lambda}$ **decay parameters using** $J/\psi \to \Lambda\overline{\Lambda}$ • Hyperon non-leptoinc decays play an important role for people to understand parity violation in particle physics For example: $\Lambda \to p\pi^-$

• $\alpha_{\Lambda} = 0.642 \pm 0.013$ (PDG08), $\alpha_{\overline{\Lambda}} = -0.63 \pm 0.13$ (DM2)

- Λ and $\overline{\Lambda}$ are un-polarized produced in J/ ψ decays
- \bullet spins are correlated between Λ and $\overline{\Lambda}$
- allow us to extract the $\overline{\Lambda}$ decay parameters (PRDD76, 036005)

• insufficient to observe CP violation in Λ decay 7

 $p^{\left(heta_{1},\phi_{1}
ight) }$

 (θ, ϕ)

Helicity system

Search for CP violation in $J/\psi \to \Lambda \overline{\Lambda}$

- CP violation due to $\Lambda/\overline{\Lambda}$ electric dipole moment (EDM) $|\langle A_{CP} \rangle| = (0.56 \sim 1.25) \times 10^{-2} d_{\Lambda} / (10^{-16} e \ cm) \ [PRD 47, R1744]$
- Electric dipole moment (PDG08)

e: d=(0.07 ± 0.07)×10⁻²⁶ *e cm*

n: d<0.29×10⁻²⁵ *e cm* @90% C.L.

Λ:
$$d < 1.5 \times 10^{-16}$$
 e cm @95% C.L

• CP observable:

$$\mathbf{A}_{\mathrm{CP}} = \frac{\mathbf{N}^{+} - \mathbf{N}^{-}}{\mathbf{N}^{+} + \mathbf{N}^{-}}$$

where N^{\pm} defined by sign $[\vec{P} \bullet (\vec{q}_1 \times \vec{q}_2)] = \pm$

Events selected in 58M J/ ψ data sample

9620 events selected N⁺: 4801 N⁻:4819 $A_{CP} = (-0.19 \pm 1.11(stat) \pm 0.18)\%$ < 2.87% @ 95% C.L. $d_{\Lambda} < 2.3 \times 10^{-16} \ e \ cm$

- statistical error dominant
- insufficient to observe
 CP violation
- more stringent upper bounds for d_{Λ} @ BESI

Preliminary results from BESIII

Detector performance and calibration

h_c physics at BESIII

$$h_c(1P)$$

PDG08

• h_c status

■Assign as J^{PC}=1⁺⁻

$h_{C}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$J/\psi(1S)\pi\pi$	not seen	313
$\eta_{\mathcal{C}}\gamma$	seen	503

 $I^{G}(J^{PC}) = ?^{?}(1^{+})$

- not well established in experiment
- width? Decay modes?

• h_c production

≻Can generated by pp colliding, but the cross-section is small with high background level.

>Highly suppressed in e^+e^- collider via $e^+e^- \rightarrow 3\gamma^* \rightarrow h_c$

≻Production via ψ (2S) decay ψ (2S) $\rightarrow \pi_0 h_c$.

challenges to search for h_c

Small production branching ratio; ambiguous decay modes.

- I: π^0 inclusive recoil mass
- $e^+e^- \rightarrow \psi(2S) \rightarrow \pi^0 h_c$

```
II: \eta_c inclusive decays (E1 tag)

\psi(2S) \rightarrow \pi^0 h_c

|_{\rightarrow} \gamma \eta_c

|_{\rightarrow} anything

or exclusive decays
```

CLEOc: (PRL101,182003(2008))

Br[ψ(2S) → π h_c]**Br**[h_c→ γ η]=4.19±0.32 ±0.45)×10⁻⁴

-It requires:

>Large ψ (2S) data sample

>Good photon energy resolution.

>High reconstruction efficiency for soft photon.

 High luminosity of BEPCII and high quality of photon detection of BESIII offer us opportunity to study h_c 14

Observation of h_c: **E1-tagged** $\psi(2S) \rightarrow \pi^0 h_c, h_c \rightarrow \gamma \eta_c$

- Select inclusive π^0
- Select E1-photon to tag h_c
- A fit of BW@Res. signal+ sideband bkg. yield:

$$\begin{split} M(h_c)^{Inc} &= 3525.16 \pm 0.16 MeV \\ \Gamma(h_c)^{Inc} &= 689 \pm 0.57 MeV \text{ (First measurement)} \\ Br(\psi' \rightarrow \pi^0 h_c) \times Br(h_c \rightarrow \gamma \eta_c)^{Inc} = (4.69 \pm 0.48(\text{stat})) \times 10^{-4} (\Gamma(h_c) \text{ floated}) \\ &= (4.69 \pm 0.29(\text{stat})) \times 10^{-4} (\Gamma(h_c) \text{ fixed at } \Gamma(\chi_{c1})) \end{split}$$

Observation of h_c : Inclusive ψ (2S) $\rightarrow \pi^0 h_c$

- Select inclusive π^0
- A fit of D-Gaussian signal + 4th Poly. bkg yield

N(h_c) = 9233 \pm 935, χ^2 /d.o.f = 38.8/38.0

Combined inclusive and E1-photon-tagged spectrum

Br(ψ'→π⁰h_c) = (8.42±1.29(stat)) ×10⁻⁴ (First measurement) Br(h_c→γη_c) = (55.7±6.3(stat)) % (First measurement)

Systematic errors

- Sources
 - Background shape, fit range, width of bin
 - Absolute energy calibration
 - Instrument resolution shape
 - E1 photon efficiency
 - π^0 efficiency
 - Number of charged track
 - Number of π^0
 - Veto XJpsi
 - **N(ψ(2S))**
 - Mass of $\psi(2S)(in the calculation of recoiling mass)$
 - Modeling of signal shape
- Systematic errors under study

Summary of h_c measurement

```
M(h<sub>c</sub>)<sup>Inc</sup>= 3525.16±0.16 (stat.) MeV
(3525.28±0.19±0.12 MeV PRL101,182003(2008),CLEOc)
```

```
\Gamma(h_c)^{Inc}= 0.89±0.57 (stat.) MeV
(First measurement)
```

Br(ψ (2S)→ π ⁰h_c) =(8.42±1.29 (stat.)) ×10⁻⁴ (First measurement)

```
Br(ψ (2S) → \pi <sup>0</sup>h<sub>c</sub>)×Br(h<sub>c</sub> → \gamma η<sub>c</sub>)<sup>lnc</sup>
=(4.69±0.48 (stat.)) ×10<sup>-4</sup>
((4.22±0.44±0.52) ×10<sup>-4</sup> inc
(4.16±0.30±0.37) ×10<sup>-4</sup> avg)
```

Br($h_c \rightarrow \gamma \eta_c$) =(55.7±6.3 (stat.))% (First measurement)

BESIII preliminary results are consistent with CLEOc measurements
 Precision improved

```
➢First measurements:
```

 $\Gamma(h_c), Br[\psi(2S) \rightarrow \pi^0 h_c], Br(h_c \rightarrow \gamma \eta_c)$

Study of $\psi(2S) \rightarrow \gamma \pi^0 \pi^0$, $\gamma \eta \eta (\eta \rightarrow \gamma \gamma, \pi^0 \rightarrow \gamma \gamma)$

- Interesting channels for glueball searches
- Based on 100M ψ(2S)
- BK study from 100M inclusive MC sample and 42pb⁻¹ continuum sample
- Unbinned Maximum Likelihood fit:
 - Signal: PDF from MC signal
 - Background: 2nd order Poly.

BR (1	0 ⁻³)	χ _{c0}	χ _{c2}
$\pi^0\pi^0$	BESIII	3.25 ± 0.03 (stat)	0.86 ± 0.02 (stat)
	PDG08	2.43±0.20	0.71±0.08
	CLEO-c	$2.94 \pm 0.07 \pm 0.35$	$0.68 \pm 0.03 \pm 0.08$
ηη	BESIII	3.1±0.1(stat)	0.59±0.05(stat)
	PDG08	2.4±0.4	<0.5
	CLEO-c	3.18±0.13±0.35	$0.51 \pm 0.05 \pm 0.06$

CLEO-c arxiv:0811.0586

Observation of $\chi_{c,I} \rightarrow \phi \phi$, $\omega \omega, \phi \omega$

Test QCD-based theory at χ_{eI} decays

 χ_{cI} hadronic decays

 χ_{cI} hadronic decays

at QCD leading order in the color octet theory

Puzzles for $\chi_{c0} \rightarrow VV$: no helicity suppress

BESII results:			
$\mathbf{BR}(10^{-3})$	χ _{c0}	χ_{c2}	
φφ	0.93±0.20	1.5±0.3	
ωω	2.3±0.7	2.0±0.7	

PLB 642,197(2006) PLB 630,7 (2005)

- $\chi_{c1} \rightarrow \phi \phi$, $\omega \omega$ is only allowed for L=2, suppressed ?
- $\chi_{c1} \rightarrow \phi \omega$ OZI doubly suppressed
- surprisingly these decays observed at BESIII

• Observation of $\chi_{cJ} \rightarrow \phi(K^+K^-)\phi(K^+K^-)$

E1-photon angular distributions

• $\chi_{c1} \rightarrow \phi \phi$ signals are clearly observed

- backgrounds and non-resonance contributions are very lower
- Branching fraction measurements are ongoing

• Observation of $\chi_{cJ} \rightarrow \omega(\pi^+\pi^-\pi^0)\omega(\pi^+\pi^-\pi^0)$

• Observation of $\chi_{cJ} \rightarrow \omega(\pi^+\pi^-\pi^0)\phi(K^+K^-)$

 m_{KK} versus $m_{\pi\pi\pi}$ for Data

m $_{\phi}$ distribution

- $\chi_{c0} \rightarrow \omega \phi$ signals are clearly observed
- backgrounds and nonresonance contributions are studied with ϕ and ω sidebands, very lower
- Branching fraction measurements are ongoing

$$\mathbf{m}_{\phi}(\text{GeV})$$

Summary

- \succ ψ(2S)→Ω ⁻Ω⁺ observed at BESII
- > Λ decay parameter and Λ EMD studied in J/ $\psi \rightarrow \Lambda \overline{\Lambda}$ at BESII
- > h_c signals observed in BESIII 100 M ψ (2S) data sample.
 - resonance parameters:
 - Br($\psi(2S) \rightarrow \pi {}^{0}h_{c}$)
 - Br($h_c \rightarrow \gamma \eta$)
- $\chi_{c1} \rightarrow \phi \phi$, $\omega \omega$, $\phi \omega$ observed branching fraction measurement ongoing
- BESIII detector performance excellent and work well

Backup slides

BESIII Commissioning and data taking milestones

Mar. 2008: first full cosmic-ray event April 30, 2008: Move the BESIII to IP July 19, 2008: First e⁺e⁻ collision event in BESIII Nov. 2008: ~ 14M ψ (2S) events collected April 14, 2009 ~110M ψ (2S) events collected May 30, 2009 42 pb⁻¹ at continuum collected July 28, 2009 ~200M J/ ψ events collected

Peak Lumi. @ Nov. 2008: 1.2 ×10³²cm⁻²s⁻¹ Peak Lumi. @ May 2009: 3.2×10³²cm⁻²s⁻¹

BEPC II Storage ring: Large angle, double-ring

Beam energy: 1.0-2.3GeV Luminosity: 1×10³³ cm⁻²s⁻¹ **Optimum energy:** 1.89 GeV **Energy spread:** 5.16 ×10⁻⁴ No. of bunches: 93 **Bunch length:** 1.5 cm **Total current:** 0.91 A

Good photon selection

Endcap(0.84<|cosθ|<0.92): Eγ > 50MeV

Angle between neutral track and the nearest charged track $\delta\theta$ <20°

Event selection – for $h_c \rightarrow \gamma \eta_c$

π^0 selection

- Photon polar angle: $|\cos\theta| < 0.8$
- Photon energy: $E_{\gamma}>40MeV$
- Each photon belongs to only one π^0
- $M_{\gamma\gamma} \in [0. 12, 0. 145] \text{GeV/c}^2$
- Perform 1C kinematic fit for each π^0 candidate (no χ^2 requirement)

E1-photon tagging in $h_c \rightarrow \gamma \eta_c$

- $450 \text{MeV} \le E_{\gamma} \le 540 \text{MeV}$
- Veto π^0 (0.100-0.145GeV/c²)
- Veto $\eta~(0.530 0.560 \text{GeV}/c^2)$

If the invariant mass of the E1 photon and any other photon in the event is compatible with either a π^0 or a η , the E1 photon candidate is rejected.

Distributions of π^0 candidate and $\pi\pi$ recoiling mass

34

Mothed	BESIII preliminary results	CLEOc	
		[PRL 101, 182003 (2008)]	
E1-tag	Counts : 2540 ± 261	1146 ± 118	
	significance : 16.5σ	10.0σ	
	$M(h_c) = 3525.35 \pm 0.16 \pm 0.10$ MeV	$3525.35 \pm 0.23 \pm 0.15 \ MeV$	
	• $\Gamma(h_c) = 0.89 \pm 0.57 \pm 0.23 \text{ MeV}$		
	$Br[\psi(2S) \rightarrow \pi^0 h_c]Br[h_c \rightarrow \gamma \eta_c]$		
	=(4.69 \pm 0.48 _{stat.})×10 ⁻⁴	$(4.22\pm0.44\pm0.52)$ ×10 ⁻⁴	

π^{0} -recoil	• Br[$\psi(2S) \rightarrow \pi^0$ h	$[c] = (8.42 \pm 1.29_{stat.}) \times 10^{-4}$	·
spectrum	• $Br[h_c \rightarrow \gamma \eta_c]$	=(55.7±6.3 _{stat.})%	

• indicate the first measurement

>BESIII preliminary results are consistent with CLEOc

> measurements

>Precision is improved

>First measurements: $\Gamma(h_c)$, Br[y(2S) $\rightarrow p^0h_c$], Br($h_c \rightarrow gh_c$) ³⁵

• Event selection $\psi(2S) \rightarrow \gamma \chi_{cJ} \rightarrow \gamma \phi \phi \rightarrow \gamma 2(K^+K^-)$

Common selection criteria:

– photon

 $\delta\theta > 20^{\circ}$, $|\cos\theta| < 0.93$, $E_{\gamma} \ge 20$ MeV

charged tracks

 $|V_z| \le 10 \text{ cm \&\& } |V_r| \le 1 \text{ cm}, |\cos \theta| \le 0.93$

Event selection for $\psi(2S) \rightarrow \gamma \chi_{cJ} \rightarrow \gamma \phi \phi \rightarrow \gamma 2(K^+K^-)$:

--
$$N_{Charged} = 4 \&\& \Sigma Q_i = 0 \&\& N_{\gamma} \ge 1$$

- -- 4C loop over N_{γ}, γ cluster with minimum χ^2 remained
- -- 2 ϕ reconstruction: minimize $\Delta = \sqrt{(M_{KK}^{(1)} m_{\phi})^2 + (M_{KK}^{(2)} m_{\phi})^2}$

--
$$\phi$$
 selection: $|M_{KK}^{(i)} - m_{\phi}| < 0.015 \text{ GeV} (\sigma = 0.003 \text{ GeV})$
-- $\chi^2 < 20$

Event selection for $\chi_{cJ} \rightarrow \omega \omega \rightarrow 2(\pi^+ \pi^- \pi^0)$

--
$$N_{Charged} = 4 \&\& \Sigma Q_i = 0$$

- -- 4C loop over N_{γ}, γ cluster with minimum χ^2 remained
- -2 π^0 reconstruction: minimize $\Delta = \sqrt{(M_{\gamma_1 \gamma_2}^{(1)} m_{\pi^0})^2 + (M_{\gamma_3 \gamma_4}^{(2)} m_{\pi^0})^2}$ -- ω reconstruction: by minimizing the $|M_{\pi^+\pi^-\pi^0}^{(i)} - m_{\omega}|$ to reconstruction one ω , and another ω is reconstructed with the rest three pions. -- π^0 selection: 0.11<*M* _{yy}<0.15 GeV -- ω selection: $|M_{\pi^+\pi^-\pi^0}^{(i)} - m_{\omega}| \le 0.04 \text{ GeV} \ (\sigma = 0.013 \text{ GeV})$ $-\chi^2 < 100$ -- veto $\psi(2S) \rightarrow \pi^+ \pi^- J/\psi \rightarrow \gamma 2(\pi^+ \pi^- \pi^0)$ $|m_{\pi\pi-rec} - m_{J/w}| > 0.008 \text{ GeV}$

Available online at www.sciencedirect.com

PHYSICS LETTERS B

Physics Letters B 642 (2006) 197-202

www.elsevier.com/locate/physletb

Measurements of $\chi_{cJ} \rightarrow K^+ K^- K^+ K^-$ decays

BES Collaboration

Table 1

Systematic error (%). In the wire resolution row, the numbers from left to righ
correspond to $\psi(2S) \rightarrow 2(K^+K^-), \phi K^+K^-$, and $\phi \phi$

Source		Χα0	Xc1	Xc2
Wire resol	lution	8.9, 9.8, 10.0	9.3, 9.9, -	9.7, 9.6, 10.1
Particle II)	8	8	8
Photon eff	ficiency	2	2	2
Backgrou	nd shape	negligible	negligible	negligible
Number o	$f \psi(2S)$	4	4	4
$\mathcal{B}(\psi(2S))$	$\rightarrow \gamma \chi_{cJ}$	4.3	4.6	4.9
$\mathcal{B}(\phi \to K$	$+K^{-})$	1.2	1.2	1.2
Total	$\chi_{cJ} \rightarrow 2(K^+K^-)$	13.5	13.9	14.3
	$\chi_{cJ} \rightarrow \phi K^+ K^-$	14.1	14.3	14.2
	$\chi_{cJ} \rightarrow \phi \phi$	14.3	-	14.5

Fig. 8. Fit to χ_{cJ} signals in $\phi\phi$ final state.