Recent results from the KEDR Detector

A.E.Blinov (on behalf of the KEDR Collaboration)

BINP, Novosibirsk, Russia

13/10/2009

A.E.Blinov

Introduction

- 2 VEPP-4M collider
 - Beam energy determination technique
 - Resonant depolarization method
 - IR-light backscattering
- 4 KEDR detector
- 5 ψ(3770) mass , Γ_{total} and Γ_{ee} measurements
 - D mass measurement
 - Search for narrow resonances below J/ψ
 - Conclusions

VEPP-4M collider

• Resonant depolarization technique: Instant measurement accuracy $\simeq 1 \times 10^{-6}$ Energy interpolation accuracy $(5 \div 15) \times 10^{-6}$ (10 \div 30 keV)

• Infra-red light Compton backscattering (2005): Statistical accuracy $\simeq 5 \times 10^{-5}$ / 30 minutes Systematic uncertainty $\simeq 3 \times 10^{-5}$ (50 ÷ 70 keV)

Resonant Depolarization Method

$$\Omega_{spin}/\omega_{rev} = 1 + \gamma \cdot \mu'/\mu_0$$

Touschek (intra-beam scattered) electron pairs are detected with 2×2 scintillation counters (s.c.)

$$\Omega_{\textit{spin}} \pm \Omega_{\textit{dep}} = \textit{n} \cdot \omega_{\textit{rev}}$$

Scattering rates from unpolarized $\uparrow\downarrow$ and polarized $\uparrow\downarrow$ beams are compared

$$\Delta \!=\! \frac{f_{pol} \!-\! f_{unpol}}{f_{pol}}$$

Energy monitoring using IR-light Compton backscattering

- R. Klein et al., NIM A384 (1997) 293: BESSY-I, 800 MeV
- R. Klein et al., NIM A486 (2002) 545: BESSY-II, 1700 MeV

$$\omega'_{max} = \frac{E^2}{E + m^2/4\omega_{laser}}$$

• CO₂ – laser ($\lambda = 10.591 \ \mu$ m, $\omega_{laser} = 0.12 \ \text{eV}$, $\omega'_{max} \simeq 6 \ \text{MeV}$)

Compton backscattering spectrum

KEDR detector

$\psi(3770)$ mass , Γ_{total} and Γ_{ee} measurements

Three scans in region
$$\psi(2S) - \psi(3770)$$
.
Scans 2004 $\int \mathcal{L} dt \simeq 0.6 \text{ pb}^{-1}$
Scan 2006 $\int \mathcal{L} dt \simeq 1.8 \text{ pb}^{-1}$

$$\sigma_{fit}(w) = \sigma_{q\bar{q}} + \varepsilon_{\psi(2S)} \cdot \int dw' \, dx \, \sigma_{\psi(2S)}(w') \, \mathscr{F}(x, w') \cdot G(\frac{W - W'}{\sigma_w}) \\ + \varepsilon_{D\bar{D}} \cdot \int dw' \, dx \, (\sigma_{\psi(3770)}(w') + \sigma_{D\bar{D}}^{nonres}(w')) \, \mathscr{F}(x, w') \cdot G(\frac{W - W'}{\sigma_w})$$

 $G(\frac{W-W'}{\sigma_w})$ – Gaussian function, $\mathscr{F}(x, W)$ – radiative correction function: E.A.Kuraev and V.S.Fadin, Sov.J.Nucl.Phys.41(1985)466.

$$\sigma_{\psi(3770)}(w) = \frac{3\pi}{M^2} \frac{\Gamma_{ee}\Gamma_h}{(W(1-x)-M)^2 + \Gamma(W)^2/4}$$
$$\Gamma(w) = \Gamma_{tot} \frac{\frac{(R_0 * p_{D_0}(W))^3}{1 + (R_0 * p_{D_0}(W))^2} + \frac{(R_0 * p_{D_{\pm}}(W))^3}{1 + (R_0 * p_{D_{\pm}}(W))^2}}{\frac{(R_0 * p_{D_0}(M))^2}{1 + (R_0 * p_{D_{\pm}}(M))^2} + \frac{(R_0 * p_{D_{\pm}}(M))^3}{1 + (R_0 * p_{D_{\pm}}(M))^2}}$$

Parameters of the fit:

 $\begin{array}{l} \sigma_{q\bar{q}}(w) - \text{light quarks cross section} \\ \varepsilon_{\psi(2S)} - \psi(2S) \text{ efficiency} \\ \varepsilon_{D\bar{D}} - D\bar{D} \text{ efficiency} \\ \sigma_{w} - \text{at } \psi(2S) \end{array} \qquad \begin{array}{l} M - \psi(3770) \text{ mass} \\ \Gamma_{tot} - \psi(3770) \text{ width parameter} \\ R_{0} - \text{interaction radius} \end{array}$

Nonresonant $D\bar{D}$ cross section and interference

$$\sigma_{D\bar{D}}^{nonres}(W) = \sigma^0(W) + \sigma^{\pm}(W)$$

$$\sigma^{0,\pm}(W) = \sigma_{D\bar{D}} \cdot \beta^3_{D^{0,\pm}}$$

In "standard" parameterization of $\sigma_{fit}(w)$ interference between $\psi(3770)$ and nonresonant $D\bar{D}$ production is absent. We tried to include it parameterizing $D\bar{D}$ cross section also as:

$$\sigma_{D\bar{D}}(w) = \int dw' \, dx |A_{\psi(3770)}(w) + A_{D\bar{D}}^{nonres}(w) \cdot e^{i\phi}|^2 \mathscr{F}(x,w') \cdot G(\frac{W-W'}{\sigma_w}),$$

where $|A_{\psi(3770)}(w)|^2 = \sigma_{\psi(3770)}(w), \quad A_{D\bar{D}}^{nonres}(w) = \sqrt{\sigma_{D\bar{D}}^{nonres}(w)}$

V

Two fits

Black line - fit without intererence (parameterization is identical to one used in MARKI, MARK2, DELCO, BES(2005) experiments): $\sigma_{D\bar{D}}^{nonres}(3770) = 0.12 \pm 0.03 \text{ nb}$.

Red line - fit with interference of resonant and nonresonant amplitudes: $\sigma_{D\bar{D}}^{nonres}(3770) = 0.39 \pm 0.09$ nb, $\phi = 3.4 \pm 0.3$.

fit without interference					
	$M_{\psi(3770)}$ [MeV]	Γ _{tot} [MeV]	Γ _{ee} eV		
2004 year	$3772.5 \pm 1.0 \pm 0.7$	$21.2\pm6.0\pm1.1$	$256\pm37\pm40$		
2006 year	$3773.4 \pm 0.6 \pm 0.5$	$24.3\pm2.4\pm1.0$	$315\pm28\pm25$		
	$3773.2 \pm 0.5 \pm 0.6$	$23.9\pm2.2\pm1.1$	$294\pm22\pm30$		
fit with interference					
2004 year	$3778.6 \pm 1.5 \pm 0.7$	$27.1\pm5.5\pm1.6$	$367\pm50\pm40$		
2006 year	$3777.0 \pm 1.5 \pm 0.7$	$28.7 \pm 3.7 \pm 2.7$	$276\pm40\pm22$		
	$3777.8 \pm 1.1 \pm 0.7$	$28.2\pm3.1\pm2.4$	$312\pm31\pm30$		

Эксперимент	$M_{\psi(3770)}[{ m MeV}]$	$\Gamma_{\psi(3770)}$ [MeV]
MARK-I	3774.1 ± 3	28 ± 5
DELCO	3772.1 ± 2	24 ± 5
MARK-II	3766.1 ± 2	24 ± 5
BES-II 2007	-	$28.5\pm1.2\pm0.2$
BES-II 2008	3772.0 ± 1.9	30.4 ± 8.5
BELLE 2004	$3778.4 \pm 3.0 \pm 1.3$	-
BABAR 2007	$3778.8 \pm 1.9 \pm 0.9$	$23.5\pm3.7\pm0.9$
BELLE 2008	$3776.0 \pm 5.0 \pm 4.0$	$27\pm10\pm5$
BABAR 2008	$3775.5 \pm 2.4 \pm 0.5$	-
PDG2008 FIT	3772.92 ± 0.35	27.3 ± 1.0
PDG2008 AVERAGE	3775.2 ± 1.7	27.6 ± 1.0
KEDR (without interference)	$3773.2 \pm 0.5 \pm 0.6$	$23.9\pm2.2\pm1.1$
KEDR (with interference)	$3777.8 \pm 1.1 \pm 0.7$	$28.2\pm3.1\pm2.4$

D mass measurement: formalism

Near-threshold production $p_D = 260 \text{ MeV} \Rightarrow$ $\sigma^2(M_D) = \sigma_W^2/4 + (\frac{p_D}{M_D})^2 \sigma_{p_D}^2 = \sigma_W^2/4 + 0.02 \sigma_{p_D}^2$ The contribution of momentum resolution is reduced. $\int \mathcal{L}dt \simeq 900 \text{ nb}^{-1}$. Data accumulated in 2004.

D mass measurement: formalism

Signal selection variables:

$$\vec{p}_D = \sum_i \vec{p}_i$$

 $\vec{p}_D = \sum_i \sqrt{p_i^2 + m_i^2} - E_{beam}$
 $M_{bc} = \sqrt{E_{beam}^2 - p_D^2}$ and $\Delta E = \sum_i \sqrt{p_i^2 + m_i^2} - E_{beam}$
Signal events: $\Delta E \sim 0$.
Simulation of $D^0 \rightarrow K^- \pi^+$:
 $\vec{p}_D^{300} = \frac{1}{100} = \frac{1}{100$

Kinematic fit with $\Delta E = 0$ constraint \Rightarrow better mass resolution, reduced momentum calibration uncertainty. $\langle \Delta E \rangle = 0$ gives the absolute momentum calibration.

$\overline{D^0}$ mass measurement: $D^0 o K^- \pi^+$

Expected $M_{\rm bc}$ resolution of two-body decay $D^0 \to K^-\pi^+$ depends on decay kinematics (along or transverse to D^0 flight). We use variable $\Delta |p| = |p_K| - |p_{\pi}|$ to separate events with different $M_{\rm bc}$ resolution.

The $\Delta |p|$ was added in minimized inverse log. likelihood function:

$$-2\ln \mathcal{L} = -2\sum_{i=1}^{N_{\rm ev}} \ln p(M_{{\rm bc},i}, \Delta E_i, \Delta |p|_i) \quad \text{(where } p = p_{sig} + p_{bck}, \ \int p \equiv 1\text{)}$$

It allows to improve statistical precision of the D^0 mass measurement by a factor of $\simeq 1.5~(0.55 \rightarrow 0.35~{\rm MeV}).$

A.E.Blinov

Recent results from the KEDR Detector

PHIPSI09, Beijing, 13/10/2009

D^0 mass measurement

 $M_{D^0} = 1865.30 \pm 0.33 \pm 0.23$ (syst)MeV

D^\pm mass measurement

Number of events $D^+ \to K^- \pi^+ \pi^+$: 110 ± 15. $M_{D^{\pm}} = 1869.53 \pm 0.49 \pm 0.20 (\text{syst}) \text{MeV}$

A.E.Blinov

PDG average is dominated by CLEO [PRL 98 (2007) 092002] and D^0 - D^+ mass difference.

In W region between 1.4 GeV and $M_{J/\psi}$ no limit on narrow resonances in e^+e^- annihilation cross section was available. A region from 1.85 GeV to 3.1 GeV has been scanned by KEDR with an E_{beam} step $\simeq (0.7 - 1.0) \ MeV$. $\int \mathcal{L}dt \simeq 280 \ \text{nb}^{-1}$ is collected. The data are accumulated in 2009 and the result is very preliminary. Three sets of event selection cuts with $\varepsilon_{J/\psi \rightarrow hadr} = 0.43$ -0.63 are used. The one with highest ε :

- \geq 2 tracks from event vertex
- $\bullet~{\geq}1$ "good" vertex tracks (with cluster in barrel calorimeter)
- there is vertex track acoplanar to "good" one ($\Delta\phi{>}0.15$ rad)
- aplanarity: sum of momenta transverse to "event plane" $> 0.1 \cdot E_{beam}$
- $\bullet \leq 3$ hits in Muon Chambers
- $|P_z^{event}/E^{event}| < 0.5$

Parameterization of resonance cross section

$$\sigma_{hadr}(w) = \sigma_{q\bar{q}} + \varepsilon_{hadr} \cdot \int dw' \, dx \, \sigma_{R \to hadr}(w') \, \mathscr{F}(x, w') \cdot \, G(\frac{W - W'}{\sigma_w}),$$

where

$$\sigma_{R \to hadr}(w) = \frac{4\pi\Gamma_{ee}^{R} \cdot Br(R \to hadr) \cdot \delta(w - M_{R})}{M_{R}^{2}}$$

With the $\sigma_{hadr}(w)$ a likelihood fits were done in $M_R \pm 5MeV$ region with 0.1 MeV M_R steps to get a best fit and 90 % upper limit for $\Gamma_{ee}^R \cdot Br(R \to hadr)$. For each set of event selection cuts ε_{hadr} was estimated from J/ψ pass in the beginning of the scan, using known $\Gamma_{ee}^{J/\psi} \cdot Br(J/\psi \to hadr)$ =4.9 keV.

Fit results

A.E.Blino

Recent results from the KEDR Detector

All three event selection yield 90 % upper limit for $\Gamma_{ee}^{R} \cdot Br(R \rightarrow hadr) \simeq 100 eV$, assuming $\varepsilon_{hadr} = \varepsilon_{J/\psi \rightarrow hadr}$, however:

- $\varepsilon_{J/\psi \rightarrow hadr}/\varepsilon_{e^+e^- \rightarrow hadr} \simeq 1.1$
- $\varepsilon_{e^+e^- \rightarrow hadr}(3.1 GeV) / \varepsilon_{e^+e^- \rightarrow hadr}(1.9 GeV) \simeq 1.2$
- $\bullet\,$ variation of σ_w could further increase the limit

therefore, combining all the factors we set a limit for

 $\Gamma^{R}_{ee} \cdot Br(R
ightarrow hadr) < 150 eV$

in W range between 1.85 GeV and J/ψ .

Conclusion

- The parameters of $\psi(3770)$ are measured using the data collected by KEDR detector at VEPP-4M collider in 2004 and 2006:
- Fit without interference:
 - $M_{\psi(3770)} = 3773.2 \pm 0.5 \pm 0.6$ MeV
 - $\Gamma_{total} = 23.9 \pm 2.2 \pm 1.1 \text{ MeV}$
 - $\Gamma_{ee} = 294 \pm 22 \pm 30 \text{ eV}$
- Fit with interference:
 - $M_{\psi(3770)} = 3777.8 \pm 1.1 \pm 0.7$ MeV
 - $\Gamma_{total} = 28.2 \pm 3.1 \pm 2.4 \text{ MeV}$
 - $\Gamma_{ee} = 312 \pm 31 \pm 30 \text{ eV}$
 - Interference angle is about π

- The masses of D⁰ and D⁺ mesons are measured using the data collected by KEDR detector at VEPP-4M collider in 2004.
 [arXiv:0909.5545 (submitted to PLB)]
- The values of the masses are:
 - $M_{D^0} = 1865.30 \pm 0.33 \pm 0.23$ MeV
 - $M_{D^{\pm}} = 1869.53 \pm 0.49 \pm 0.20$ MeV
- The D^0 mass is consistent with the more precise CLEO measurement, obtained with the different technique $(D^0 \rightarrow K_S^0 \phi)$.
- The measurement of the D^{\pm} mass is the most precise direct one.

The main systematic uncertainties for $\psi(3770)$ mass (fit without interference) in scan 2006

• Conservative estimates of $\psi(3770)$ mass error

	0 1 1 1 1 1
Detection efficiency variations	: 0.4 MeV
Including background from G(3943) resonance	: 0.3 MeV
Luminosity measurement instability	: 0.2 MeV
Fitting form $(R_0 \text{ variations})$: 0.1 MeV
Fitting energy limit variations	: 0.1 MeV
Absolute energy determination	: <0.1 MeV
Sum in quadrature	: 0.57 MeV

The main systematic uncertainties for $\psi(3770)$ mass (fit with interference) in scan 2006

• Conservative estimates $\psi(3770)$ mass error

Fitting form $(R_0 \text{ variations})$: 0.5 MeV
Including background from G(3943) resonance	: 0.3 MeV
Detection efficiency variations	: 0.3 MeV
Luminosity measurement instability	: 0.2 MeV
Fitting energy limit variations	: 0.1 MeV
Absolute energy determination	: <0.1 MeV
Sum in quadrature	: 0.7 MeV

Scan 2004

Fit without interference(black line) Nonresonant $\sigma_{D\bar{D}} = 0.189 \pm 0.086$ nb.

Fit with interference. (red line). Nonresonant $\sigma_{D\bar{D}}=0.368\pm0.203$ nb, $~~\phi=2.583\pm0.845$