D⁰D̄⁰ Mixing and Other Charm Results from Babar

Brian Meadows

Representing the BaBar Collaboration International Workshop on e⁺e⁻ collisions from Phi to Psi , IHEP, Beijing, China, Oct 13-16, 2009

Charm Studies at BaBar

Mixing in the Charm Sector

D_s Spectroscopy

Summary

Charm Studies at BaBar

□ Continuum cross sections are large \rightarrow Can use "off peak" data

e^+e^-	\rightarrow	σ
$b\overline{b}$		$1.05 \mathrm{nb}$
$car{c}$		$1.30 \mathrm{nb}$
$sar{s}$		$0.35 \mathrm{nb}$
$uar{u}$		$1.39 \mathrm{nb}$
$d\bar{d}$		0.35 nb

- Very high statistical precision (~1.4 x $10^6 D's/ fb^{-1}$).
- Also:

. . .

- B decays to charm allow measurement of absolute BF's, and spins ?
- D tagging ~ 10⁷ fully reconstructed D's.
- Can study charm baryons

Mixing (Flavour Oscillations) In Neutral D Mesons

Mixing Parameters

Flavour oscillations in the neutral D system arise from the propagation of two mass eigenstates D_1 and D_2 that comprise the flavour states

$$irac{\partial}{\partial t}\left(egin{array}{c} |D^0>\ |ar{D}^0>\ \end{pmatrix}=\left(\mathcal{M}-rac{i}{2}\mathcal{G}
ight) egin{array}{c} |D^0>\ |ar{D}^0>\ \end{pmatrix}$$

 $egin{array}{rcl} |D_1>&=&p|D^0>+q|ar{D}^0> & |D_1(t)>&=&|D_1>e^{-i(\Gamma_1/2+im_1)t}\ |D_2>&=&p|D^0>-q|ar{D}^0> & |D_2(t)>&=&|D_2>e^{-i(\Gamma_2/2+im_2)t} \end{array}$

Eigenvalues are $m_{1,2}+i\Gamma_{1,2}/2$ with means: $M=(m_1+m_2)/2$ $\Gamma=(\Gamma_1+\Gamma_2)/2$

It is usual to define four mixing parameters:

 $x = rac{m_1 - m_2}{\Gamma}$; $y = rac{\Gamma_1 - \Gamma_2}{2\Gamma}$; $\left|rac{q}{p}
ight|$; $\phi_{\scriptscriptstyle M} = \mathrm{Arg}\left\{rac{q}{p}
ight\}$ CPV signalled by $p \neq q$

• CPV from either the mixing, or from the decay (or both) can occur

$$D^{o} \rightarrow \overline{D^{o}} \xrightarrow{\overline{\mathcal{A}}_{f}(\overline{D^{o}} \rightarrow f)}_{\mathcal{A}_{f}(D^{o} \rightarrow f)} \qquad \lambda_{f} = \frac{q\mathcal{A}_{f}}{p\mathcal{A}_{f}} \propto e^{i(\delta + \phi_{f} + \phi_{M})}_{\text{strong weak mixing}}$$

PHIPSI09, IHEP, Beijing, China, 10/14/2009

Mixing in Standard Model is Very Small

Off-diagonal mass matrix term – two leading terms:

 $\Delta C = 2$ (short-range) (contributes mostly to x)

Down-type quarks in loop:

- *b* : CKM-suppressed ($|V_{ub}V_{cb}|^2$)
- d, s: GIM-suppressed

 $x \propto (m_s^2\!\!-\!\!m_d^2)/m_c^2 \!\sim\! 10^{-5}$

(almost 2 orders of magnitude less than current sensitivity) Hadronic intermediate states (long-range)

Difficult to compute (need to know all the magnitudes and phases, ...) Most computations predict *x* and *y* in the range $10^{-3}-10^{-2}$ and |x| < |y|Recent predictions: $|x| \le 1\%$, $|y| \le 1\%$ *(consistent with current observation)*

New Physics and Mixing

Several extensions to the SM have been considered that can increase the value of x including:

[A recent survey: Phys. Rev. D76, 095009 (2007), arXiv:0705.3650]

- Generally agreed that signals for new physics are:
 - EITHER **X** >> **Y**
 - OR <u>Any evidence for CPV</u>

Phase in $\Delta C=1$ transitions tiny: $V_{cs} \sim 1 - \lambda^2/2 - i\eta A^2 \lambda^4$ Wolfenstein $\rightarrow 0.97 - 6 \times 10^{-4} i$ representation

Mixing Measurements at BaBar

- Good vertex resolution allows measurement of time-dependence of *D*⁰ decays.
- Can eliminate distortion from *B* decays by cutting low momentum *D*⁰'s
- Excellent particle ID (Dirc and dE/dx) allows clean K/π separation

□ D^{0} 's from $D^{*+} \rightarrow D^{0}\pi^{+}$ decays:

- Tag flavor of *D*⁰ by the sign of the "slow pion" in *D** decays
- Allow clean rejection of backgrounds
- **BUT** untagged events can be used too !

Brian Meadows

Hadronic Decays Accessible to D^0 or \overline{D}^0

Two decay mechanisms interfere:
 Mixing then Cabibbo-favoured (CF) decay
 Doubly-Cabibbo-Suppressed (DCS) decay

□ For $|x|, |y| \ll 1$, decay rate R_{WS} for wrong-sign (WS) decays $D^0 \rightarrow K^+ \pi^-$:

• "Right-sign" (RS) decays $D^0 \rightarrow K^- \pi^+$ dominated by \mathcal{A}_f , so rate $R_{RS} \propto e^{-i\tau}$

Evidence for Mixing in $D^0 \rightarrow K^+\pi^-$

Mixing signal clear in time-dependence of R_{WS}/R_{RS} ratio

Likelihood contours (expanded to account for systematic uncertainty of ~0.7 x statistical.)

PHIPSI09, IHEP, Beijing, China, 10/14/2009

Lifetime Difference Measurements

□ In the absence of CPV,

- D₁ is CP-even and D₂ is CP-odd
- Measurement of lifetimes τ for D⁰ decays to CP-even and CP-odd final states lead to a measurement of y !

• Allowing for CPV, measure the D^0 and \overline{D}^0 asymmetry

$$A_{ au} = rac{ au^{-}(ar{D}^{0}
ightarrow h^{+}h^{-}) - au^{+}(D^{0}
ightarrow h^{+}h^{-})}{ au^{-}(ar{D}^{0}
ightarrow h^{+}h^{-}) + au^{+}(D^{0}
ightarrow h^{+}h^{-})} = rac{1}{2} A_{_{M}} y \cos \phi_{_{M}}
ightarrow x \sin \phi_{_{M}}$$

PRD 69,114021 (Falk, Grossman, Ligeti, Nir & Petrov)

Lifetime Difference (Flavor-Tagged D⁰'s)

Tagged PRD 78:011105 (2008) – 384 fb⁻¹

Lifetime Difference (Untagged D⁰'s)

arXiv:0908.0761 – 384 fb⁻¹ PRELIMINARY

- □ Untagged K⁺K⁻ decays are used
- Two main backgrounds
 - Combinatorial (largest) Examined in sidebands
 - From "broken charm" (small) Examined in simulations (MC)

□ Fit decay time in narrow region

Tagged Sample – 384 fb⁻¹ (for comparison)

- These are dis-joint samples of $K\pi$ and KK decays
- For each $K\pi$ and KK pair, selection & reconstruction systematics ~cancel.

HFAG World Average for y_{CP} A. Schwartz, et al. (updated, EPS 2009)

 $x'' = x \cos \delta_{\kappa \pi \pi} + y \sin \delta_{\kappa \pi \pi}$ AND $y'' = y \cos \delta_{\kappa \pi \pi} - x \sin \delta_{\kappa \pi \pi}$

Evidence for Mixing - (WS) Tagged $D^0 \rightarrow K^+ \pi^- \pi^0$

HFAG Mixing Summary

The HFAG collaboration have combined a wide range of these and other "mixing observables" to extract the underlying mixing parameters and their χ^2 contours:

x	=	$(0.98\substack{+0.24\-0.26})$	%	y y	=	(0.83 ± 0.16)	%
q/p	=	$0.87^{+0.17}_{-0.15}$		ϕ	=	$(-8.5^{+7.4}_{-7.0})$	degrees
$\delta_{{\scriptscriptstyle K}\pi}$	=	$(26.4^{+9.6}_{-9.9})$	degrees	$\delta_{\kappa\pi\pi}$	=	$(14.8^{+20.2}_{-22.1})$	degrees
R_D		(0.337 ± 0.009)	%	A_D	=	(-2.2 ± 2.4)	%

Charm-Strange Spectroscopy

PHIPSI09, IHEP, Beijing, China, 10/14/2009

- Two "broad states" were found by BaBar and CLEO
- □ They were unexpectedly *narrow* AND *below* K *emission* threshold.
 - Much theoretical discussion still about this
 - \rightarrow Need more spectroscopic data to constrain the models

Higher D_s States in DK System (First reported by Babar at Charm06 here!) Phys.Rev.Lett.97:222001,2006 – 240 fb⁻¹

D_s States in D^*K System

New study of whole BaBar sample of *DK* and *D*K* systems States are seen in both charges and four *D* decay modes

NEW and PRELIMINAR

arXiv:0908.080 - 470 fb⁻¹

Assignments for $D_{sJ}^{*}(2710) \& D_{sJ}^{*}(2860)$?

- Decay to D^*K eliminates $J^P = O^+$
- Decay to BOTH modes hints that these 2 states have *natural parity*:
 Helicity angle distribution is also consistent with this

• Branching ratios may favour radial excitation $2^{3}S_{1}$ over orbital $1^{3}D_{1}$:

- **Babar sees evidence for mixing in the** D^{0} meson system in four situations.
 - Two measurements of y_{CP} have a combined significance of 4.1³/₄ and agree well with one another and with other recent measurements.
 - Measurements of x and y, rotated by unknown strong phases, have been made for "WS" hadronic decays to $K^+\pi^-$ and to $K^+\pi^-\pi^0$.
 - There is no evidence for CPV in mixing.
- The most precise B factory mixing measurements are yet to come, as are results from BES III and LHCb.
 - Measurements of strong phases from BES III $\psi(3770)$ data are eagerly anticipated.
- A new D_{sJ} state has been observed in the D*K system.
 M=3044± 8(stat.)⁺³⁰-5(syst.) MeV/c²; Γ=239±35(stat.)⁺⁴⁶-42(syst.) MeV/c².
- $D_{s1}^*(2710)$ and $D_{sJ}^*(2860)$ are observed in both *DK* and *D*K* systems with roughly equal branching fractions.
 - Requires natural parity AND J ^P=0 ⁺ is ruled out
 - Branching ratios may favor radial excitation $2^{3}S_{1}$ assignment for $D_{s1}(2710)$
- Again, more information is on the way from BES III

Backup Here

PHIPSI09, IHEP, Beijing, China, 10/14/2009

BaBar

- Main purpose: Study CP violation in asymmetric $e^+e^ \Upsilon$ (4S) $B\overline{B}$
- Experiment far exceeded the design goals
 - Luminosity order of magnitude larger
 - Many more measurements and discoveries.

Mixing in the D System

Mixing (and CPV) in the D⁰ system were discussed over 30 years ago.
 A. Pais and S.B. Treiman, Phys. Rev. D12, 2744 (1975).

BUT evidence for mixing was only recently found

\rightarrow	BABAR:	PRL 98 211802 (2007)	$D^0 \rightarrow K^+ \pi^-$	decay time analysis	3.9 <i>o</i>
	BELLE:	PRL 98 211803 (2007)	$D^0 \rightarrow K^+K^-, \pi^+\pi^-vs.K^+\pi^-$	lifetime difference	3.2σ
	BELLE:	PRL 99 131803 (2007)	$D^0 \rightarrow K^0_s \pi^+ \pi^-$	t-dep. Dalitz plot	2.2σ
	CDF:	PRL 100 121802 (2008)	$D^0 { ightarrow} K^+ \pi^-$	decay time analysis	3.8 <i>0</i>
\rightarrow	BABAR:	PRD 78:011105 (2008)	$D^0 \rightarrow K^+ K^-, \pi^+ \pi^- vs. K^+ \pi^-$	lifetime difference	30
\rightarrow	BABAR:	arXiv:0807.4544 (2008)	$D^0 \rightarrow K^+ \pi^- \pi^0$	t-dep. Dalitz plot	3.2σ
\rightarrow	BABAR:	arXiv:0908.0761 (2009)	$D^0 \rightarrow K^+ K^- vs. K^+ \pi^- (untagged)$	lifetime difference	3.3 σ
	HFAG average:	arXiv:0803.0082 (updated)			$> 10\sigma$

\Box Of all neutral mesons, the D^0 system exhibits the least mixing

System (Year):	х:	у:
<i>К</i> ⁰ (1956)	0.95	0.99
B _d (1987)	0.78	≈0
B _s (2006)	26	0.15
<i>D</i> ^o (2007)	0.0098	0.0075

PHIPSI09, IHEP, Beijing, China, 10/14/2009

Recent Mixing and CPV Measurements

- Mixing measurements
 - D⁰→K⁺π⁻
 - $D^0 \rightarrow K^+ K^-, \pi^+ \pi^-$
 - $D^0 \rightarrow K^{(*)} + \nu$
 - $D^0 \rightarrow \mathsf{K}^+ \pi^- \pi^0$
 - $D^0 \rightarrow K_s \pi^+ \pi^-$
 - $D^0 \rightarrow K_s K^+ K^-$
 - Quantum Corr.
 - D⁰→K⁺K⁻

- Search for time integrated CP violation (CPV)
 - D⁰→K⁺K⁻, π⁺π⁻
 - $D^0 \rightarrow \pi^+ \pi^- \pi^0$, $K^+ K^- \pi^0$

 \mathcal{B}

Heavy-Light Systems are Like the Hydrogen Atom

When m_Q ! 1, s_Q is fixed.
 So j_q = L ⊗s_q is separately conserved
 Total spin J = j_q⊗s_Q

- Narrow states are easy to find.
- Two wide states are harder.
- Since charm quark is not infinitely heavy, some j_q=1/2, 3/2 mixing can occur for the J^P=1⁺ states.

PHIPSI09, IHEP, Beijing, China, 10/14/2009

Decays of Neutral D Mesons

When final state *f* is accessible to both *D⁰* and *D⁰*, interference between mixing and direct decay will occur

Which leads to a time-dependence for decay

$$egin{aligned} \mathcal{A}_f(t) &= \mathcal{A}_f e^{-(\Gamma+iM)t} imes [\cosh((y+ix)\Gamma t/2)+\lambda_f \sinh((y+ix)\Gamma t/2)] \ ar{\mathcal{A}}_{ar{f}}(t) &= ar{\mathcal{A}}_{ar{f}} e^{-(\Gamma+iM)t} imes iginlimes iginlimes \hat{\lambda}_{ar{f}} \sinh((y+ix)\Gamma t/2) + \cosh((y+ix)\Gamma t/2)igg] \end{aligned}$$

 $\lambda_{f} = \frac{q\bar{\mathcal{A}}_{f}}{p\mathcal{A}_{f}} \; ; \; \bar{\lambda}_{\bar{f}} = \frac{p\mathcal{A}_{\bar{f}}}{q\bar{\mathcal{A}}_{\bar{f}}} \; ; \left\{ \begin{array}{l} \text{carry strong phase } \delta \text{ between} \\ \text{the decays } D^{0} \rightarrow f \text{ and } \bar{D}^{0} \rightarrow f \end{array} \right.$

The interference makes the mixing parameters measurable

BUT, for this, it is essential to know the strong phase δ

Measurement of y_{CP} in $D^0 \rightarrow K^0_S K^+ K^-$ decays

Time-Dependent Amplitude Analysis

of D^0 $K_s \pi^+ \pi^-$ PRL 98:211803 (2007) 540 fb⁻¹

PRD 72:012001 (2005) 9 fb⁻¹

33

- Here, it is possible to measure x, y, |p/q| and arg $\{p/q\}$ the $D^0 \overline{D}^0$ strong phase δ is fixed by presence of *CP* eigenstates in *f*
 - Strong phases of all points relative to CP eigenstates measured by timedependent amplitude analysis of the DP.

