Charm Hadronic Decays and Quantum Correlations at CLEO-c

Roy A. Briere Carnegie Mellon (+ CLEO & BESIII)

International Workshop On e⁺e⁻ Collisions From φ to ψ

14 Oct 2009

Outline

Introduction

Mapping $D_{(s)}$ Decays

- > Absolute D_s Branching Fractions with "tagging"
- > D and D_s Dalitz plots (untagged)

Correlations and Coherence

- > Quantum Correlations: The $K\pi$ strong phase
- > The CKM angle γ : Coherence in D⁰ \rightarrow K2 π , K3 π

The Future...

Backup slides feature several other recent analyses:

 $\begin{array}{ll} D_{(s)} \rightarrow PP \ (\ pseudoscalars \) & D \rightarrow K_{S}\pi, \ K_{L}\pi & D \rightarrow KK \\ D_{s} \rightarrow p \ n & D \rightarrow \eta X, \ \eta' X \ (excl.) & Charm \ cross-sections \end{array}$

Charm Threshold

D⁺ & D⁰ studies:* 818 pb⁻¹ at 3770 MeV $e^+e^- \rightarrow \psi(3770) \rightarrow D^+ D^- \cdot D^0 D^0$ [2.9 nb, 3.7 nb] Resonance on top of ~16 nb of uds continuum

D_s studies:* 586 pb⁻¹ at 4170 MeV e⁺e⁻ → D_s^{*+} D_s⁻ + c.c. [0.9 nb] D_s ^{*±} → D_s[±] γ (94%) on top of ~13 nb of uds continuum ~ 9 nb of non-strange charm pairs (+ tiny D_s⁺ D_s⁻)

Both cases: ONLY charm mesons, no E_{cm} for extra pions ! Benefit from constrained kinematics.

*Note: a few analyses use only part of integrated luminosity

D_(s) Tagged Events

"Tag": fully-reconstructed D_(s) meson

- > Eliminates uds continuum
- > Further constrains the other $D_{(s)}$ [know direction]

Tag can also have definite flavor, or be a CP-eigenstate !

 $D^0 \rightarrow K^+ \pi^ D^0 \rightarrow K^- e^+ \upsilon$

 $D_{s}^{+} \rightarrow K^{-} K^{+} \pi^{+} \qquad D_{s}^{-} \rightarrow K^{-} K^{+} \pi^{-}$ $e^{+} e^{-} \rightarrow D_{s}^{*} D_{s} \rightarrow D_{s}^{+} D_{s}^{-} \gamma$ $\widehat{\gamma}$ $\widehat{\gamma}$ π^{+} π^{-}

Hadronic D_s Decays

Recent past:

> Overall 25% syst. on branching fraction scale

[all referenced to $D_s \rightarrow \phi \pi$, measured with a complex technique]

> Smaller number of modes explored, compared to non-strange D

> Poor knowledge of inclusive rates

Now, big improvements from CLEO-c:

- > Precise $D_s \rightarrow KK\pi$ absolute branching fraction + Dalitz analysis
- > Other modes improved, first observations added, ...
- > Much-improved inclusive picture
- > Very useful for Monte-Carlo simulations [LHC-b, BESIII, B factories...]

D_s Absolute Branching Fractions

PRL100, 161804 298 pb⁻¹ (2008)

Global fit to single tag and double tag rates

- Independent of # D_s*D_s pairs
- > Each BF insensitive to efficiency of all other moder used as teach

- B $(D_{s}^{+} \rightarrow K^{+} K^{-} \pi^{+})$ = $(5.50 \pm 0.23 \pm 0.16)\%$
- *plus* 7 other modes: $K_s K^+ K^+ K^- \pi^+ \pi^0 K_s K^- \pi^+ \pi^+$ $\pi^+ \pi^+ \pi^- \pi^+ \eta \pi^+ \eta' K^+ \pi^+ \pi^-$

CLEO-c vs. PDG

D_s Inclusive Hadrons

PRD 79, 112008 586 pb⁻¹ (2009)

Use 3 best tag modes: $\phi\pi$ K*⁰K KK

[18600 tags]

> 94% of $D_s^*D_s$ leads to $D_s D_s \gamma$; here, we require γ

> cut on recoil masses against both (D_s) & ($D_s\gamma$) systems

D_s Inclusive Hadrons

PRD 79, 112008 586 pb⁻¹ (2009)

TABLE I. D_s inclusive yield results. Uncertainties are statistical and systematic, respectively. The inclusive K_L^0 results are only used as a check for K_S^0 . The $D_s^+ \rightarrow K_L^0 X$ yield requires a correction before comparing with the $D_s^+ \rightarrow K_S^0 X$ yield, as explained in the text. PDG [11] averages are shown in the last column, when available, for non-CLEO measurements.

					•
Mode	Yield (%)	K_L^0 mode	Yield (%)	\mathcal{B} (PDG) (%)	_
$D_s^+ \to \pi^+ X$	$119.3 \pm 1.2 \pm 0.7$				-
$D_s^+ \to \pi^- X$	$43.2 \pm 0.9 \pm 0.3$				
$D_s^+ \to \pi^0 X$	$123.4 \pm 3.8 \pm 5.3$				
$D_s^+ \to K^+ X$	$28.9 \pm 0.6 \pm 0.3$			20^{+18}_{-14}	
$D_s^+ \to K^- X$	$18.7 \pm 0.5 \pm 0.2$			13^{+14}_{-12}	21 CLEO results
$D_s^+ \rightarrow \eta X$	$29.9 \pm 2.2 \pm 1.7$				
$D_s^+ \rightarrow \eta' X$	$11.7 \pm 1.7 \pm 0.7$				
$D_s^+ \rightarrow \phi X$	$15.7 \pm 0.8 \pm 0.6$				VS.
$D_s^+ \rightarrow \omega X$	$6.1 \pm 1.4 \pm 0.3$				
$D_s^+ \rightarrow f_0(980)X, f_0(980) \rightarrow \pi^+ \pi^-$	<1.3% (90% C.L.)				3 prior non-CLEC
$D_s^+ \rightarrow K_S^0 X$	$19.0 \pm 1.0 \pm 0.4$	$D_s^+ \rightarrow K_L^0 X$	15.6 ± 2.0	20 ± 14	
$D_s^+ \rightarrow K_S^0 K_S^0 X$	$1.7 \pm 0.3 \pm 0.1$	$D_s^+ \rightarrow K_L^0 K_S^0 X$	5.0 ± 1.0		
$D_s^+ \rightarrow K_S^0 K^+ X$	$5.8 \pm 0.5 \pm 0.1$	$D_s^+ \rightarrow K_L^0 K^+ X$	5.2 ± 0.7		
$D_s^+ \rightarrow K_S^0 K^- X$	$1.9 \pm 0.4 \pm 0.1$	$D_s^+ \rightarrow K_L^0 K^- X$	1.9 ± 0.3		
$D_s^+ \to K^+ K^- X$	$15.8 \pm 0.6 \pm 0.3$				
$D_s^+ \longrightarrow K^+ K^+ X$	<0.26% (90% C.L.)				
$D_s^+ \longrightarrow K^- K^- X$	<0.06% (90% C.L.)				

KKX rates: use to help to untangle decay mechanisms shown in Feynman diagrams

In particular, we obtain lower limits on hadronic annihilation diagram contributions... [diagrams (e) and (f) at right]

PhiPsi09 Briere CLEO-c

8

D_s : Exclusive ω modes

Motivated by previous inclusive ω yield:
B (D_s⁺ → ω X) = (6.1 ± 1.4) %
SAME tagging technique used.

ModeB (%) $D_s^+ \rightarrow \pi^+ \omega$ $0.21 \pm 0.09 \pm 0.01$ $D_s^+ \rightarrow \pi^+ \pi^0 \omega$ $2.78 \pm 0.65 \pm 0.25$ $D_s^+ \rightarrow \pi^+ \pi^+ \pi^- \omega$ $1.58 \pm 0.45 \pm 0.09$

5 other modes with limits:

 $\pi^{+} \eta \omega \quad K^{+} \eta \omega$ $K^{+} \omega \quad K^{+} \pi^{0} \omega \quad K^{+} \pi^{+} \pi^{-} \omega$

Selected Mass Peaks:

Dalitz Analysis Overview

Use untagged analyses:

- > Higher background, but also higher statistics
- > Still statistics limited; can handle background systematics

Fits start with an "Isobar model" :

- > Sum of interfering Breit-Wigners, with correct angular factors
- > Many other subtleties; see papers
- ... and then add some extra features :
 - > Detailed S-wave treatments are tried [not just BW!]
 - > Flatte formalism for $f_0(980) \rightarrow K K$ [needed near threshold]

2 of 3 analyses: "golden modes" used for normalization

- > Results can improve models so "users" get correct efficiency
- > Subtleties are important for physics; models just need a good fit...

Dalitz 1: $D_{s}^{+} \rightarrow K^{+} K^{-} \pi^{+}$

PRD 79, 072008 586 pb⁻¹ (2009)

>12000 <u>signal</u> events; 85% purity Key D_s normalization mode

Resonant Sub-modes required: $[= E687 + f(1370)^{\circ} \pi^{+}]$ $\phi(1020) \pi K^{*}(892)^{\circ} K^{+} f_{0}(980)^{\circ} \pi^{+} K^{*}_{0}(1430)^{\circ} K^{+} f_{0}(1370)^{\circ} \pi^{+} f_{0}(1710)^{\circ} \pi^{+}$ > Add f(1370) $\Delta \chi^{2} = -100$ Fit χ^{2} : 178/117

- > No need for $\kappa \Delta \chi^2 = -5$
 - [= S-wave $K\pi$]

Dalitz 2: $D^+ \rightarrow K^+ K^- \pi^+$

PRD 78, 072003 818 pb⁻¹ (2008)

19500 <u>signal</u> events; 84% purity

Best fit: *Fit* χ^2 : *895/708*

 $\phi(1020) \pi^{+} K^{*}(892)^{0} K^{+} K^{*}_{0}(1430)^{0} K^{+} a_{0}(1450)^{0} \pi^{+} K^{*}_{2}(1430)^{0} K^{+} \phi(1680)^{0} \pi^{+}$

plus: $K K^+$ (K = S-wave $K\pi$)

BUT non-resonant almost as good as κ : $\chi^2 = 898/708$ [LASS-inspired K π : $\chi^2 = 912/710$]

Also search for CP violation:

- > Singly-Cabibbo suppressed
- > Sensitive to new physics in penguins
- > Not true of CF, DCSD...

Asymmetry: ($-0.03 \pm 0.84 \pm 0.29$)%

Also have results by submode...

Dalitz 3: $D^+ \rightarrow K^- \pi^+ \pi^+$

PRD 78, 052001 572 pb⁻¹ (2008)

>139000 <u>signal</u> events; 99% purity Key D⁺ normalization mode

Starting Fit [E791 model]: Fit χ^2 : 531/391 $K^*(892)^{\circ} \pi^+ K^*_{o}(1410)^{\circ} \pi^+ K^*_{2}(1430)^{\circ} \pi^+ K^*(1680)^{\circ} \pi^+$ plus non-resonant term & $K\pi^+ (K = S$ -wave $K\pi$) K is the dominant "fit fraction" -- But, fit can be improved ...

Improved by adding I=2 $\pi^+ \pi^+$ S-wave:Fit χ^2 : 416/385Also replace κ , non-res w/ binned S-wave K π :Fit χ^2 : 359/347

Dalitz 3: $D^+ \rightarrow K^- \pi^+ \pi^+$

PRD 78, 052001 572 pb⁻¹ (2008)

Results with binned S-wave $K\pi$

Amplitude & Phase of S-wave

binned S-wave K π : idea from E791

Black points above: Ampl. & phase are quite smooth

vs. mass; curves show other models

Phase Information

Subtleties of D Tagging

- > lepton flavor tags: a PURE tag of c vs. cbar
- > hadronic "flavor" tags: pure for charged D⁺, not for D⁰ contaminated with "DCSD": D⁰ \rightarrow K⁺ π^- is 0.4% of K⁻ π^+ contaminated by D⁰ D^{0bar} mixing
- > CP-eigenstate tags: other D is ~ ($D^0 \pm D^{0bar}$)

Complicated... BUT: sensitivity to interesting parameters!

All phase measurements depend on interference

- > CP-eigenstate decays to common (D^0 , D^{Obar}) final states (e.g., $K^- K^+$)
- > DCSD processes also provide common final states

Phases & interference are always interesting physics, but these analyses are also useful inputs to D mixing and flavor physics in the B sector...

D Physics & CKM γ

$B^- \rightarrow D^0 K^- \& D^{0bar} K^-$

> Interfere if D⁰, D^{0bar} have common final states; Allows extraction of angle γ ("phase of V_{ub}")

$K\pi$ mode:

- > Must know relative phase: from the K π final-state interactions
- This phase is also relevant to proper use of D⁰-D^{0bar} mixing results from this decay mode

Multibody modes:

- > D⁰-D^{0bar} interference is averaged over Dalitz plot
 Two body case: only phase Now: phase + reduction in magnitude
- > Measure one global complex parameter, or do in "Dalitz bins"

Quantum Correlation Analysis

PRD 78, 012001 PRL100, 221801 281 pb⁻¹ (2008)

Familiar hadronic tags: Approximate flavor tags CP tags (both signs)

Hadronic tags with K_L: Can do, given kinematics Adds more CP tags

Semileptonic Tags Exact flavor tag

Quantum Correlation Analysis

Correlated D pairs are produced at the $\psi(3770)$: Produces a C = -1 initial state.

- > CP+CP+ & CP-CP- decays are forbidden
- > CP+CP- are enhanced

etc

PRD 78, 012001 PRL100, 221801 281 pb⁻¹ (2008)

PhiPsi09 Briere CLEO-c

19

 $cos \ \delta = 1.10 \pm 0.35 \pm 0.07$ $\delta = (22^{+11} + 9_{-11})^{\circ}$

Results:

0

Quantum Correlations & $K\pi$ phase

PRD 78, 012001 PRL100, 221801 281 pb⁻¹ (2008)

3950108-002

0.020

2.0

000 0,010 X Sinð

0,000

-0.008

Shading: 90% CL

[physical region]

0.0

0.5

1.0

cosδ

1.5

80

40

 δ (deg)

Quantum Correlations Update

Large update in progress at CLEO-c

Improvements:

- > More luminosity: 2.9 x
- > Add semileptonic muons
- > Use $K_{1/5}\pi$ in Dalitz bins
- > Add Kev vs $K_1 \pi^0$
- > Use more modes K₁ tags [+30%/+60% for CP+/CP- statistics]
 - [has two missing particles !!!]
- > Switch from inclusive to exclusive semileptonic
- > Use K⁻ I⁺ υ vs. K⁻ π^+ : unique parameter sensitivity

Expect to cut error on $cos\delta$ in half

Multi-body modes: $D^0 \rightarrow K^- \pi^+ \pi^0$ and $D^0 \rightarrow K^- \pi^+ \pi^- \pi^-$

Measure actual "Dalitz-integrated" interference via R, δ If D⁰ and D^{0bar} decays were identical: R = 1, δ = 0

Variations across Dalitz "dilute" effect; roughly speaking: The "2" in interference cross-term becomes "2 R cos δ " *

Can write a formal
expression...
"x" is position
in Dalitz plot
$$R_{K\pi\pi^{0}}e^{-i\delta_{D}^{K\pi\pi^{0}}} = \frac{\int \mathcal{A}_{K^{-}\pi^{+}\pi^{0}}(\mathbf{x})\mathcal{A}_{K^{+}\pi^{-}\pi^{0}}(\mathbf{x})d\mathbf{x}}{A_{K^{-}\pi^{+}\pi^{0}}\mathcal{A}_{K^{+}\pi^{-}\pi^{0}}}$$

Measure by using CP, hadronic, leptonic flavor tags

* Reality is just a bit more complicated, but this is the "spirit" of the math...

PRD 80, 031105 818 pb⁻¹ (2009)

Measure for $D^0 \rightarrow K^-\pi^+\pi^0$ and $D^0 \rightarrow K^-\pi^+\pi^+\pi^-$ modes

 $K^{-}\pi^{+}\pi^{0}$: Large R, retain sensitivity even when integrating Dalitz plot $K^{-}\pi^{+}\pi^{-}$: More cancellation across Dalitz plot [subtlety: likely good news,

TABLE II. D final states reconstructed in this analysis.

for other reasons...]

Туре	Final states
Flavored CP-even CP-odd	$\begin{array}{c} K^{\mp}\pi^{\pm}, K^{\mp}\pi^{\pm}\pi^{\pm}\pi^{\mp}, K^{\mp}\pi^{\pm}\pi^{0} \\ K^{+}K^{-}, \pi^{+}\pi^{-}, K^{0}_{S}\pi^{0}\pi^{0}, K^{0}_{L}\pi^{0}, K^{0}_{L} \\ K^{0}_{S}\pi^{0}, K^{0}_{S}\omega, K^{0}_{S}\phi, K^{0}_{S}\eta, K^{0}_{S}\eta' \end{array}$

PRD 80, 032002 818 pb⁻¹ (2009)

PhiPsi09 Briere CLEO-c

c_i and s_i: essentially bin-averaged <R cos δ > and <R sin δ > [a re-mapping of previous R, δ in each bin: $c_i^2 + s_i^2 = R_i^2$]

We try to optimize choice of binning based on model, NOTE: any binning gives unbiased CKM γ ; optimize for precision

Compare CLEO to BaBar model: Now we have control of uncertainties...

High-statistics toy MC studies: Reduces model uncertainty in CKM measurement using this D mode form about 7° to 1.7°

The Future

CLEO-c finished data taking in March, 2008:

- > Many analyses here use full data samples.
- But others (e.g., Quantum Correlations) are being updated and improved in technique.
- > Other analyses are also in progress.

BESIII turned on in July, 2008:

- > New detector; second ring added to accelerator
- > Peak luminosity: already ~4-5x CLEO-c at ψ (3770)
- > So far, charmonium data [200 M J/ ψ ; 100 M ψ (25)]
- > Open-charm data soon; *will benefit from CLEO experience*

Super B Factories:

- > High-statistics of continuum charm
- > Good for Dalitz analyses, for example [but NO CP-tagging...]
- > Maybe run at charm threshold ?

New dedicated tau-charm machine ?

PhiPsi09 Briere CLEO-c

[D mixing !] but NO CP-tagging...]

BACKUP SLIDES

Other recent hadronic analyses

$$\begin{array}{l} \mathsf{D}_{\mathsf{s}} \rightarrow \mathsf{p} \ \overline{\mathsf{n}} \\ \mathsf{D} \rightarrow \mathsf{K}_{\mathsf{S}} \pi, \ \mathsf{K}_{\mathsf{L}} \pi \\ \mathsf{D} \rightarrow \mathsf{K} \mathsf{K} \\ \mathsf{D} \rightarrow \eta \mathsf{X}, \ \eta' \mathsf{X} \quad [\text{ excl. modes }] \\ \mathsf{D}_{(\mathsf{s})} \rightarrow \mathsf{PP} \qquad [\mathsf{P} = \mathsf{pseudoscalars }] \\ \mathbf{Cross-sections} \end{array}$$

$$D_s \rightarrow p \overline{n}$$

Interference in $K_L \pi$, $K_S \pi$

D Decay diagrams source both K⁰ and K⁰bar \Rightarrow These interfere in physical K_L, K_S final states: K_S, K_L asymmetry

 $\mathsf{R}(\mathsf{D}) = [\mathsf{B}(\mathsf{D} \Rightarrow \mathsf{K}_{\mathsf{S}}\pi) - \mathsf{B}(\mathsf{D} \Rightarrow \mathsf{K}_{\mathsf{L}}\pi)] / [\mathsf{B}(\mathsf{D} \Rightarrow \mathsf{K}_{\mathsf{S}}\pi) + \mathsf{B}(\mathsf{D} \Rightarrow \mathsf{K}_{\mathsf{L}}\pi)]$

Bigi & Yamamoto [PLB 349, 363 (1995)]

- D^o : expect BF asymmetry of:
 - D⁺∶ more diagrams to consider...

 $R(D^{0}) = 2 \tan^{2}\theta_{c} \sim 10\%$... $R(D+) \qquad \text{see next page...}$

Interference in $K_L \pi$, $K_S \pi$

PRL100, 091801 281 pb⁻¹ (2008)

$D \rightarrow KK$

Interesting to study SU(3) breaking effects:

> Long known K⁺ K⁻ is enhanced relative to $\pi^+ \pi^-$

> K_s K_s: two diagrams cancel in SU(3) limit;

but can have rescattering...

Also measure SU(3)-breaking ratio: $B(D^{0} \rightarrow K^{+} K^{-}) / B(D^{0} \rightarrow \pi^{+} \pi^{-})$ $= 2.89 \pm 0.05 \pm 0.06$

Exclusive $D \rightarrow \eta$, η' *modes*

ηη

PRD 77, 092003 281 pb⁻¹ (2008)

First observations of: **Evidence for:** Improved BF for:

$\eta \pi^+ \pi^-$

(a) $D^+ \rightarrow \eta \pi^+$ (b) $D^+ \rightarrow \eta' \pi^+$ 200 50 Entries / (MeV/c²) (d) $D^0 \rightarrow \eta' \pi^0$ (c) $D^0 \rightarrow n\pi^0$ 10 பா (e) $D^0 \rightarrow \eta \eta$ (f) $D^0 \rightarrow \eta \eta'$ 50 10 0 1.86 1.89 1.83 1.83 1.86 1.89 M_{bc} (GeV/c²)

Mode	Yield	Branching Fraction (10^{-4})	PDG [16] (10 ⁻⁴)
$D^+ \rightarrow \eta \pi^+$	1033 ± 42	$34.3 \pm 1.4 \pm 1.7$	35.0 ± 3.2
$D^+ \rightarrow \eta' \pi^+$	352 ± 20	$44.2 \pm 2.5 \pm 2.9$	53 ± 11
$D^0 \rightarrow \eta \pi^0$	156 ± 24	$6.4 \pm 1.0 \pm 0.4$	5.6 ± 1.4
$D^0 \rightarrow \eta' \pi^0$	50 ± 9	$8.1 \pm 1.5 \pm 0.6$	_
$D^0 \rightarrow \eta \eta$	255 ± 22	$16.7 \pm 1.4 \pm 1.3$	
$(\gamma\gamma)(\gamma\gamma)$	141 ± 17	15.3 ± 1.8 (stat.)	
$(\gamma\gamma)(\pi^+\pi^-\pi^0)$	115 ± 13	19.0 ± 2.2 (stat.)	
$D^0 \rightarrow \eta \eta'$	46 ± 9	$12.6 \pm 2.5 \pm 1.1$	
$(\gamma\gamma)(\gamma\gamma)$	33 ± 8	14.8 ± 3.3 (stat.)	
$(\gamma\gamma)(\pi^+\pi^-\pi^0)$	14 ± 5	10.5 ± 3.5 (stat.)	_
$D^0 \rightarrow \eta \pi^+ \pi^-$	257 ± 32	$10.9 \pm 1.3 \pm 0.9$	<19
$D^+ \rightarrow \eta \pi^+ \pi^0$	149 ± 34	$13.8 \pm 3.1 \pm 1.6$	_
$D^0 \rightarrow \eta' \pi^+ \pi^-$	21 ± 8	$4.5 \pm 1.6 \pm 0.5$	
$D^+ \rightarrow \eta' \pi^+ \pi^0$	33 ± 9	$15.7 \pm 4.3 \pm 2.5$	_

PhiPsi09 Briere CLEO-c

Measure all modes to two pseudoscalars $[K^{\pm}/K_{s}/\pi^{\pm}/\pi^{0}/\eta/\eta']$ 9+1 D⁰ / 8+1 D⁺ / 7+1 D_s⁺ modes "+1" : Normalize to: D⁰ \rightarrow K⁻ π^{+} D⁺ \rightarrow K⁻ $\pi^{+}\pi^{+}$ D_s⁺ \rightarrow K⁺K_s

Charm Threshold

Reconstruct one D_(s) meson: momentum can separate DD, DD*, DDπ, etc.

Much more detailed than previous results ! Used to choose CLEO CofM energy for D_s physics

See a much richer structure in separated channels, compared to the total charm rate

What about $D_s \rightarrow \phi \pi^+$?

PRL 100, 161804 (2008) 298 pb⁻¹

New key normalizing mode? : $B (D_S \rightarrow K^+ K^- \pi^+)$ = (5.50 ± 0.23 ± 0.16) %

 $\phi \pi^+$ "Branching fraction" ill-defined

Can also quote B \mathcal{B} ($D_{S} \rightarrow K^{+} K^{-} \pi^{+}$) with various M(K⁺ K⁻) windows: $\mathcal{B}_{\Delta M}$ for mass within $\pm \Delta M$ of ϕ

Value	This result ${\mathcal B}$ (%)
B ₅	$1.69 \pm 0.08 \pm 0.06$
\mathcal{B}_{10}	$1.99 \pm 0.10 \pm 0.05$
\mathcal{B}_{15}	$2.14 \pm 0.10 \pm 0.05$
\mathcal{B}_{20}	$2.24 \pm 0.11 \pm 0.06$

$$D_{s} \rightarrow K^{+} K^{-} \pi^{+}$$

