$e^+e^- \rightarrow$ hadrons via ISR: light quarks spectroscopy

E. Solodov Budker INP, Novosibirsk, Russia (for BaBar collaboration)

PhiPsi09, October 2009

- Short introduction
- Comparison with direct e⁺e⁻
- Overview of results obtained up to now
- Channel-by-channel discussion
- Conclusion

More attention to the intermediate final states and hadron spectroscopy

PEP-II e+e- collider, Babar detector

Motivation

- Low energy e⁺e⁻ cross section dominates in hadronic contribution to g-2 of muon - data from VEPP-2M were most precise
- Poor direct e⁺e⁻ data in 1.4 2.5 GeV region
- Hadron spectroscopy at low masses
- Access to charmonium region (J/ ψ , ψ (2S) decays)
- ISR at BaBar gives competitive statistic
- BaBar has excellent capability for ISR study
- All major hadronic processes are under study

e⁺e⁻
$$\rightarrow$$
 2μγ, 2πγ, 2Kγ, 2pγ, 2Aγ, 2Σγ, AΣγ
e⁺e⁻ \rightarrow 3πγ
e⁺e⁻ \rightarrow 2(π⁺π⁻)γ, K⁺K⁻π⁺π⁻γ, K⁺K⁻π⁰π⁰γ, 2(K⁺K⁻)γ
e⁺e⁻ \rightarrow 2(π⁺π⁻)π⁰π⁰γ, 3(π⁺π⁻)γ, K⁺K⁻2(π⁺π⁻)γ
e⁺e⁻ \rightarrow π⁺π⁻π⁰π⁰γ, π⁺π⁻π⁰π⁰γ, π⁺π⁻π⁰ηγ ...
e⁺e⁻ \rightarrow K⁺K⁻π⁰γ, K⁺K⁻ηγ (KK*γ, φπ⁰γ, φηγ ...)
e⁺e⁻ \rightarrow π⁺π⁻π⁺π⁻π⁰/ηγ, K⁺K⁻π⁺π⁻π⁰/ηγ
Are being updated to full BaBar data with ~500fb⁻¹

BaBar measurements summary

ISR vs. e⁺e⁻ luminosity at low E_{c.m.}

$e^+e^- \rightarrow \pi^+\pi^-\pi^0$ cross section

Fit results: $\omega - \phi$ region

October 13, 2009

Fit results: higher mass region

Good fit obtained for the range up to 1.8 GeV/c^2 .

Extending the fit to masses above 1.8 GeV/c^2 may require a more complicated fitting function taking into account non-resonant 3π production.

Mass and width parameters are dependent upon our assumed phases - interference effect is strong

BaBar		PDG04	
B(ω′→ee)B(ω′→3π)=(0.82±0.05±0.06)·10 ⁻⁶	M(ω′)= 1350±20±20 MeV/c ²	1400 - 1450	
	Γ(ω′)= 450±70±70 MeV	180 - 250	
B(ω ^{′′} →ee)B(ω ^{′′} →3π)=(1.3±0.1±0.1)·10 ⁻⁶	M(ω'')= 1660±10±2 MeV/c ²	1670 ± 30	
	Γ(ω΄′)= 230±30±20 MeV	315 ± 35	
October 13, 2009 ISR	at BaBar, E.Solodov		11

BaBar ISR: $e^+e^- \rightarrow K^+K^-\pi^0$, $K_SK\pi$

Dominant decay mode for φ(1680)
Systematic error:
5% for K_SKπ
6% for K⁺K⁻π⁰
Agreement with DM1, DM2
Significant improvement in accuracy

BaBar ISR: $e^+e^- \rightarrow K^+K^-\pi^0$, $K_SK\pi$

K₂*(1430)K I=1 0.4 0.4 K₂*(1430)K I=0 K*(980)K K*(980)K **I**=1 **I=0** 0.30.3 0.2 0.20.1 1.5 2.5 2.5 1.5 2 2.2 2.2 E_{c.m.}(GeV) E_{c.m} (GeV) E_{am} (GeV) E_{cm} (GeV)

Dominant intermediate states: $K^{*}(980)K$ and $K_{2}^{*}(1430)K$

Dalitz plot population for $K_S K^-\pi^+$ final state strongly depends on relation between I=0 and I=1 amplitudes:

 $M=M^{\pm} (\alpha_{I=0} - \alpha_{I=1})+M^{0} (\alpha_{I=0} + \alpha_{I=1})$ From Dalitz plot fit isovector and isoscalar cross sections can be extracted both for K*(980)K and for K₂*(1430)K

October 13, 2009

BaBar ISR: $e^+e^- \rightarrow \phi \eta$, $\phi \pi^0$

 $e^+e^- \rightarrow \phi \eta$ is best channel for study of excited ϕ -state. Contribution of ω -like states is suppressed by OZI rule.

 $e^+e^- \rightarrow \phi \pi^0$ is suitable for search of exotic isovector resonances. For ordinary isovector states, $\phi \pi^0$ decay is suppressed by OZI rule. The cross section is described by single resonance with m=1600±30 MeV, Γ =200±100 MeV

Fit to $e^+e^- \rightarrow \phi \eta$, K^{*}K

$e^+e^- \rightarrow 2\pi^+ 2\pi^- cross$ section

Systematic errors: 12% for $m_{4\pi} < 1$ GeV, 5% for $1 < m_{4\pi} < 3$ GeV, 16% for higher masses) best measurement above 1.4 GeV

Coverage of wide region in one experiment No point-to-point normalization problems

Intermediate states:

 $a_1(1260)\pi$ - dominant, structure which may be $f_0(1370)\rho$ final state is seen. For detailed study, a simultaneous analysis of $2\pi^+2\pi^-$ and $\pi^+\pi^-2\pi^0$ final states is required.

$e^+e^- \rightarrow 2\pi^+ 2\pi^- cross$ section

$\pi^+\pi^-\pi^+\pi^-$ substructures

$e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ (Preliminary)

$\pi^+\pi^-\pi^0\pi^0$ substructures

October 13, 2009

$e^+e^- \rightarrow K^+K^-\pi^+\pi^-, K^+K^-\pi^0\pi^0$

Motivation:

PRD-RC 74 (2006) 091103

- PRD 76 (2007) 012008Factor 2.5 more statistics with respect to published result x2 NOW! ٠
- Search for $\phi(1020)f_0(980)$ final state and relation to $\phi(1020) \rightarrow f_0(980) \gamma$ ٠
- BR of J/ψ and $\psi(2S)$ to $\phi(1020)\pi\pi$ ٠
- Search for **new states** ٠

Kaon substructures for K⁺K⁻ $\pi^+\pi^-$, $\pi^0\pi^0$

Selection of $\phi(1020)\pi^+\pi^-$, $\pi^0\pi^0$

Mass spectrum for $e^+e^- \rightarrow \phi \pi^+\pi^-$, $\phi \pi^0\pi^0$

 $e^+e^- \rightarrow \phi f_0(980) \rightarrow K^+K^-\pi^+\pi^-(\pi^0\pi^0)$

Cross section for $e^+e^- \rightarrow \phi f_0(980)$ - First!

Cross section for $e^+e^- \rightarrow 2(\pi^+\pi^-)\pi^0$

What we have inside of 5π ?

October 13, 2009

What we have inside of 5π ?

Published in PRD

Dominates by $\eta \pi \pi$, $\omega \pi \pi$, $\phi \pi \pi$ and $J/\psi \pi \pi$ production

Cross section for $e^+e^- \rightarrow \eta \pi^+\pi^-$

Cross section for $e^+e^- \rightarrow \omega \pi^+\pi^-$

Cross section for $e^+e^- \rightarrow \omega f_0(980)$

Cross section for $e^+e^- \rightarrow (\omega \pi^+ \pi^- - \omega f_0(980))$

Some distributions with $\rho(770)$

a₂(1320) is excluded: m= $1.3183 \pm 0.0006 \text{ GeV/c}^2$; $\Gamma = 0.107 \pm 0.005 \text{ GeV}$ But $\pi(1300)$ is good: m = $1.300 \pm 0.100 \text{ GeV/c}^2$; $\Gamma = 0.200 - 0.600 \text{ GeV}$ a1(1260) is good: m = $1.230 \pm 0.040 \text{ GeV/c}^2$; $\Gamma = 0.250 - 0.600 \text{ GeV}$

 $N(\rho^0) = N(\rho^{\pm})$ - it can be if X has I=1 and $e^+e^- \rightarrow \rho^{\pm}X^{\pm}(1300), X^{\pm} \rightarrow \rho^0\pi^{\pm}$ and $e^+e^- \rightarrow \rho^0X^0(1300), X^0 \rightarrow \rho^{\pm}\pi^{\pm}$ $(\rho^0\rho^0\pi^0)$ combination is not allowed (C-parity)

X(1300) candidates with I=1: $a_1(1260)$ $\pi(1300)$ - best candidate $a_2(1320)$ Helicity angle is needed - more data !

Cross section for $e^+e^- \rightarrow \rho X(1243)$

Determine $\sigma(e^+e^- \rightarrow \rho X(1300))$ as $\sigma(4\pi\pi^0) - \sigma(\omega\pi\pi) - \sigma(\eta\pi\pi)$

ωππ, ηππ are excluded

The $e^+e^- \rightarrow 2(\pi^+\pi^-)\eta$ cross section

Cross section $e^+e^- \rightarrow \eta'(958)\pi^+\pi^-$, $f_1(1281)\pi^+\pi^-$

The e⁺e⁻ \rightarrow K⁺K⁻ $\pi^{+}\pi^{-}\pi^{0}$ cross sections

Comparison with MC simulation

How big is ω (782) contribution?

Structure in $e^+e^- \rightarrow 6\pi$ cross section

- Under-threshold pp-resonance should be seen in multihadron cross sections
- Structure at 1.9 GeV was observed in photoproduction (FOCUS) and e⁺e⁻-annihilation (DM2, FENICE)
- BABAR confirms the structure, but width is wider than FOCUS observed.

Cross section ratio

Gaussian fits give:

m1 = $1.63 \pm 0.02 \text{ GeV/c2}$ σ 1 = $0.12 \pm 0.02 \text{ GeV/c2}$

φ(1680) **?**

 $R = 3.98 \pm 0.06$

If $\boldsymbol{\omega}$ contribution is excluded:

 $R = 3.18 \pm 0.05$

 $R \approx 3$ if $\omega \pi^+\pi^-\pi^0$ events are excluded. Can somebody calculate what this ratio should be according to isospin?

Conclusions

- 1. ISR method is developed at Babar as a practical tool to study e+e- annihilation in wide CM energy range from $2m_{\pi}$ up to 7 GeV/c² with competitive accuracy.
- Numerous number of e+e→ hadrons process are studied at Babar including productions of pions, kaons, baryons, D-mesons, ...
- 3. Decay parameters of many vector mesons are improved ρ_5 , ω_5 , ϕ_5 , J/ψ , ψ (25), ...
- 4. Some of the measured resonances still have no proper theoretical explanation... PWA is needed to learn more..
- 5. New states are discovered using ISR technique incl Y(4260), Y(2175), ...
- New low energy e+e- colliders (VEPP2000, BEPC) as well as ISR from BaBar and Belle will give improved measurements of XS and much better parameters of discovered structures.
 - ... new surprises are expected...

What is NOT discussed in this talk.

- 1. e+e- -> π + π -, analysis is going on, final result should come out in few weeks, the results will allow a new test of SM with muon magnetic moment $a_u = (g-2)/2$.
- 2. Measurements of quantity R(s) is important to calculate fine structure constant at Z-mass $\alpha_{em}(s=M_z^2)$
- 3. Isovector cross sections e+e-H(T=1) and corresponding τ -lepton decays τ ->Hv are used to test CVC hypothesis.
- Most of reactions used only half of available statistics. Many processes are still not considered. This is the perspective field for future work.
- 5. Super BF with 2 orders higher luminosity promise a great future for ISR

BaBar contribution to R

$$J/\psi - \psi(2S)$$
 region

We measure:

$$\Gamma_{ee}^{J/\psi} \cdot B_{f}^{J/\psi} = \frac{N_{J/\psi \to f} m_{J/\psi}^{2}}{6\pi \cdot dL/dE \cdot \varepsilon(m_{J/\psi}) \cdot C}$$

About 6% systematic error from efficiency (5%) and luminosity (3%) (~3%) with new x2 data (1%) If statistical error < 6(3) % BaBar is competitive with other experiments !

J/ψ region for 2($\pi^+\pi^-$) π^0

The $\psi(2S) \rightarrow J/\psi \pi^+\pi^- \rightarrow 2(\pi^+\pi^-)\pi^0$

N $_{\psi(2S)}$ = 256 ± 17, ϵ = 0.0965 dL/dE = 84.0						
$\Gamma_{ee} \bullet B_{J/\psi\pi\pi} \bullet B_{J/\psi\to 3\pi} = (1.86 \pm 0.12 \pm 0.11) \times 10^{-2} \text{ keV}$						
= :	2.48 ± 0.06 keV, $B_{J/\psi\pi\pi}$ = 0.318 ±	0.006	PDG2006			
	$B_{J/\psi \to 3\pi}$ = (2.36 ± 0.16 ± 0.16) ×	10 ⁻²]			
	$B_{J/\psi \rightarrow 3\pi} = (2.02 \pm 0.14) \times 10^{-2}$ S	=1.7	PDG2006			
	$B_{J/\psi \to 3\pi} = (2.18 \pm 0.19) \times 10^{-2}$	BaBar	2004			
	$B_{J/\psi \to 3\pi}$ = (2.18 ± 0.20)×10 ⁻²	BES	2004			
	$B_{J/\psi \to 3\pi}$ = (2.09 ± 0.12)×10 ⁻²	BES	2004			
	$B_{J/\psi \to 3\pi} = (1.42 \pm 0.19) \times 10^{-2}$	MARK	3 1988			

We are in agreement with BaBar and BES !

$J/\psi - \psi(2S)$ region for other selections

J/Ψ and $\Psi(2s)$ decay in ISR

With $\Delta L=454 \text{ 1/fb}$ N $_{J/\Psi} = 1.6 \text{ 10}^7$, N $_{\Psi(2S)} = 0.6 \text{ 10}^6$ ev. in full solid angle

More than 10 decays are observed for the first time: $J/\psi \to K^+K^-\pi^+\pi^-\eta$ $J/\psi \to K^+K^-p^0p^0$ $J/\psi \to K^{*0}K^{*0}$ $J/\psi \to K^*K_2(1770)$ $J/\psi \to \phi\pi^0\pi^0$ $J/\psi \to \phi\pi^0\pi^0$ $J/\psi \to \phi\pi_0\pi^0$ $\Psi(2S) \to \pi^+\pi^-\pi^+\pi^-\eta$ $\Psi(2S) \to K^+K^-\pi^+\pi^-\eta$ $\Psi(2S) \to K^+K^-\pi^+\pi^-\pi^0\pi^0$