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Conservation laws
Conservation of energy and momentum:

∂µT
µν(x) = 0

Conservation of charge:
∂µN

µ(x) = 0

Local conservation of charge and energy-momentum.

⇐⇒ Hydrodynamics!

This can be generalized to systems with several conserved charges:

∂µN
µ
i = 0,

i = baryon number, strangeness, charge. . .
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Conservation laws
Conservation of energy and momentum:

∂µT
µν(x) = 0

Conservation of charge:
∂µN

µ(x) = 0

Consider only baryon number conservation, i = B.

⇒ 5 equations contain 14 unknowns!

⇒ The system of equations does not close.

⇒ Provide 9 additional equations or
Eliminate 9 unknowns.
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placeholder
So what are the components of Tµν and Nµ?

• Nµ and Tµν can be decomposed with respect to arbitrary, normalized,
time-like 4-vector uµ,

uµu
µ = 1

• Define a projection operator

∆µν = gµν − uµuν, ∆µνuν = 0,

which projects on the 3-space orthogonal to uµ.
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• Then
Nµ = nuµ + νµ

where

n = Nµuµ is (baryon) charge density in the frame where
u = (1,0), local rest frame, LRF

νµ = ∆µνNν is charge flow in LRF,

and
Tµν = εuµuν − P∆µν +Wµuν +W νuµ + πµν

ε ≡ uµTµνuν energy density in LRF
P ≡ −1

3∆µνTµν isotropic pressure in LRF
Wµ ≡ ∆µαTαβu

β energy flow in LRF
πµν ≡ [12(∆µ

α∆ν
β + ∆ν

β∆µ
α)− 1

3∆µν∆αβ]Tαβ

(traceless) shear-stress tensor in LRF

• The 14 unknowns in 5 equations:

Nµ 4
Tµν 10

}
⇔


n, ε, P 3
Wµ 3
νµ 3
πµν 5
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• So far uµ is arbitrary. It attains a physical meaning by
relating it to Nµ or Tµν:

1. Eckart frame:

uµE ≡
Nµ

√
NνNν

uµ is 4-velocity of charge flow, νµ = 0.
The 14 unknowns are n, ε, P, Wµ, πµν, uµ.

2. Landau frame:

uµL ≡
Tµνuν√

uαTαβTβγuγ

uµ is 4-velocity of energy flow, Wµ = 0.
The 14 unknowns are n, ε, P, νµ, πµν, uµ.

• In general, the hydrodynamical equations are not closed
and cannot be solved uniquely.

• 14 unknowns ⇔ 5 equations
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Viscous hydrodynamics
In Landau frame,

Wµ ≡ 0, νµ = −q
µ

h
= − n

ε+ P
qµ,

where qµ is heat flow:

Nµ = nuµ + νµ

Tµν = εuµuν − (Peq + Π)∆µν + πµν

Need 9 additional equations to determine

Π, πµν, qµ, Peq

Equation of state
Peq = P (T, µ)
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Matching conditions
ideal fluid ⇐⇒ exact local kinetic equilibrium

dissipation ⇐⇒ deviations from thermal distribution

Non-equilibrium thermodynamics?

• What are entropy and pressure?

• EoS? Temperature?
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Matching conditions
ideal fluid ⇐⇒ exact local kinetic equilibrium

dissipation ⇐⇒ deviations from thermal distribution

Non-equilibrium thermodynamics?

• What are entropy and pressure?

• EoS? Temperature?

Energy and particle number defined for arbitrary system:

ε = uµT
µνuν and n = Nµuµ

apply equilibrium EoS:

s = s0(ε, n) and P = P0(ε, n)

i.e. we match the system to an equilibrium system of the same ε and n
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relativistic Navier-Stokes
Entropy four-current:

Sµ = suµ +
µ

T

qµ

h
where

h =
ε+ P

n

Require non-decrease of entropy:

0 ≤ ∂µSµ = −Π∇µuµ − qµ
T

e+ p
∇µµ

T
+ πµν∇〈µuν〉

where

A〈µν〉 =

[
1

2
(∆µ

σ∆ν
τ + ∆ν

τ∆
µ
σ)− 1

3
∆µν∆στ

]
Aστ

and
∇µ = ∆µν∂ν
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relativistic Navier-Stokes

0 ≤ ∂µSµ = ΠX + qµX
µ + πµνX

µν

is always valid if we identify

Π ∝ X, qµ ∝ Xµ, πµν ∝ Xµν

dissipative currents small corrections linear in gradients

Π = −ζ∇µuµ

qµ = −κ T

e+ p
∇µµ

T

πµν = 2η∇〈µuν〉

η, ζ shear and bulk viscosities, κ heat conductivity
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Navier-Stokes equations of motion

Dn = −n∂µ uµ − ∂µ
(
κ
Tn

h2
∇µµ

T

)
Dε = −(ε+ P−ζ∇αuα)∂µu

ν+2η∇〈αuβ〉∇〈αuβ〉
(ε+ P−ζ∇αuα)Duµ = ∇µ(P−ζ∇αuα)−2∆µ

α∂β(η∇〈αuβ〉)

where
D = uµ∂µ and ∇µ = ∆µν∂ν
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Navier-Stokes equations of motion

Dn = −n∂µ uµ − ∂µ
(
κ
Tn

h2
∇µµ

T

)
Dε = −(ε+ P−ζ∇αuα)∂µu

ν+2η∇〈αuβ〉∇〈αuβ〉
(ε+ P−ζ∇αuα)Duµ = ∇µ(P−ζ∇αuα)−2∆µ

α∂β(η∇〈αuβ〉)

where
D = uµ∂µ and ∇µ = ∆µν∂ν

but these are parabolic. . .
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Parabolic partial differential equations
PDE of the form

A
∂2

∂x2
u+B

∂2

∂x∂y
u+ C

∂2

∂y2
u+D

∂

∂x
u+ E

∂

∂y
u+ F = 0

is parabolic if
B2 −AC = 0

Such equations provide infinite speed for signal propagation
Müller (’76), Israel & Stewart (’79) ...

Solutions are unstable
Hiscock & Lindblom, PRD31, 725 (1985) ...
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Hyperbolic partial differential equations
PDE of the form

A
∂2

∂x2
u+B

∂2

∂x∂y
u+ C

∂2

∂y2
u+D

∂

∂x
u+ E

∂

∂y
u+ F = 0

is hyperbolic if
B2 −AC > 0

For example one-dimensional wave equation

∂2u

∂t2
− c2∂

2u

∂x2
= 0

Solutions stable and with finite propagation speed.
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Causal viscous hydro
To obtain causal equations we have to replace

Π = −ζ∇µuµ

by

τΠDΠ + Π = −ζ∇µuµ + · · ·

or something similar.
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Causal viscous hydro
Israel & Stewart:

Entropy four-flow including terms second order in dissipative fluxes:

Sµ = suµ + µ
T
qµ

h −
(
β0Π2 − β1qνq

ν + β2πλνπ
λν
) uµ

2T

−α0q
µΠ

T
+
α1qνπ

νµ

T

⇒ “Second order theory”

or, rather, Transient fluid dynamics
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Evolution equation for shear
Require non-decrease of entropy:

0 ≤ ∂µSµ = ΠX + qµX
µ + πµνX

µν

Identify πµν = 2ηX〈µν〉:

πµν = 2η

[
∇〈µuν〉−β2〈uλ∂λπµν〉−

1

2
πµνT∂λ

(
τπu

λ

2ηT

)]
+2η

[
α1∇〈µqν〉 + a′1q

〈µuλ∂λu
ν〉
]

where

A〈µν〉 =

[
1

2
(∆µ

σ∆ν
τ + ∆ν

τ∆
µ
σ)− 1

3
∆µν∆στ

]
Aστ

and
∆µν = gµν − uµuν.
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Israel-Stewart evolution equations

DΠ = − 1

τΠ
(Π + ζ∇µuµ)− 1

2
Π

(
∇µuµ +D ln

β0

T

)
+
α0

β0
∂µq

µ − a′0
β0
qµDuµ

Dqµ = − 1

τq

[
qµ + κq

T 2n

ε+ p
∇µ
(µ
T

)]
− uµqνDuν

−1

2
qµ
(
∇λuλ +D ln

β1

T

)
− ωµλqλ

−α0

β1
∇µΠ +

α1

β1
(∂λπ

λµ + uµπλν∂λuν) +
a0

β1
ΠDuµ − a1

β1
πλµDuλ

Dπµν = − 1

τπ

(
πµν − 2η∇〈µuν〉

)
− (πλµuν + πλνuµ)Duλ

−1

2
πµν

(
∇λuλ +D ln

β2

T

)
− 2π

〈µ
λ ων〉λ

−α1

β2
∇〈µqν〉 +

a′1
β2
q〈µDuν〉
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Israel-Stewart evolution. . .
bulk pressure Π, shear stress πµν heat flow qµ treated as independent
dynamical quantities that relax to their Navier-Stokes value on time scales
τΠ(e, n), τπ(e, n), τq(e, n)

Equations of motion 5 equations
evolution of bulk 1 equation
evolution of heat flow 3 equations
evolution of shear stress 5 equations
14 equations, 14 unknowns

These equations are causal and stable

But what are the parameters α0, α1, β0, β1, β2?

Or how to obtain ζ, κ, η?

=⇒ use kinetic theory

Or some other microscopic theory
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more terms. . .

• Kinetic theory derivation (see Denicol et al., PRD85, 114047 (2012)) or
gradient expansion (see Romatschke et al., JHEP 0804, 100 (2008)) lead
to even more terms (all possible in second order in products of gradients)

• Do not contribute to entropy, may affect the evolution

• What is usually solved is

πµν + τπ

[
∆µ
α∆ν

βDπ
αβ +

4

3
πµν∇αuα

]
= η∇〈µuν〉
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η/s

Ideal:
(ε+ P )Duµ = ∇µP

c.f.
ma = F
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η/s

Ideal:
(ε+ P )Duµ = ∇µP

Viscous:

(ε+ P )Duµ = ∇µP−∆µ
α∂βπ

αβ

Duµ =
1

ε+ P
∇µP − 2η

ε+ P
∆µ

α∂β

[
∇〈αuβ〉 + · · ·

]
+ · · ·

µ = 0 =⇒ Ts = ε+ P :

Duµ =
1

ε+ P
∇µP − 2

T

η

s
∆µ

α∂β

[
∇〈αuβ〉 + · · ·

]
+ · · ·
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Shear viscosity

Newton:

Txy = −η∂ux
∂y

acts to reduce velocity gradients

in closed system: energy conserved

kinetic energy gets converted to internal energy

⇒ dissipation
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Bjorken hydrodynamics

v=z/t

v~c

z

v~c

0τ=τ=0τ

z

ε=ε0

0z0

t

z
0

τ τ0

fluid dynamics

pre-equilibrium

c©Dirk H. Rischke

• At very large energies, γ → ∞ and
“Landau thickness” → 0

• Lack of longitudinal scale
⇒ scaling flow

v =
z

t
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Shear in 1D-bjorken
Navier-Stokes stress

πµν = 2η∇〈µuν〉 = diag(0,
2η

3τ
,
2η

3τ
,−4η

3τ
)

Tµν = diag(ε, P − πL
2
, P − πL

2
, P + πL)

where πL = πηη = −4η

3τ

Effective longitudinal pressure P + πL < P
Effective transverse pressure P − πL/2 > P

Shear slows down longitudinal expansion and accelerates transverse expansion
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Effect on temperature

0 2 4 6 8 10
r (fm)

0 0

5 5

10 10

15 15

20 20

τ
 (

fm
/c

) 

ideal hydro
viscous hydro

T=150 MeV

T=130 MeV

QGP

MP

HRG

HRG

free hadrons

Au+Au, b=0 fm, SM-EOSQ

c©Huichao Song

• Edges expand
further and stay
hotter
• At first core
cools slower,
later faster
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Sensitivity to η/s

Schenke et al. Phys.Rev.C85:024901,2012
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• higher coefficients are suppressed more by dissipation
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When to end?
• How far is hydro valid?

• How and when to convert fluid to particles?

• Kinetic equilibrium requires
scattering rate � expansion rate

• Scattering rate τ−1
sc ∼ σn ∝ σT 3

• Expansion rate θ = ∂µu
µ

• Fluid description breaks down when
τ−1
sc ≈ θ

→ momentum distributions freeze-out

• τ−1
sc ∝ T 3 → rapid transition to

free streaming

• Approximation: decoupling takes place
on constant temperature hypersurface
Σfo, at T = Tfo
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Cooper-Frye
• Number of particles emitted = Number of particles crossing Σfo

⇒ N =

∫
Σfo

dΣµN
µ

• Frozen-out particles do not interact anymore: kinetic theory

⇒ Nµ =

∫
d3p

E
pµf(x, p · u)

⇒ N =

∫
d3p

E

∫
Σfo

dΣµ p
µf(x, p · u)

• Invariant single inclusive momentum spectrum: (Cooper-Frye formula)

E
dN

dp3
=

∫
Σfo

dΣµ p
µf(x, p · u)

Cooper and Frye, PRD 10, 186 (1974)
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Freeze-out from viscous fluid
Cooper-Frye still works

E
dN

dp3
=

∫
Σfo

dΣµ p
µf(x, p · u) =

∫
Σfo

dΣµ p
µf0[1 + δf ]

Grad 14-moment approximation (Boltzmann distribution)

δf = ε(x) + εµ(x)kµ + εµνk
µkν

Shear only, require Landau matching:

ε =

∫
d3p

E
uµp

µuνp
νf(x, p · u) =

∫
d3p

E
uµp

µuνp
νf0[1 + δf ] = ε

n =

∫
d3p

E
uµp

µf(x, p · u) =

∫
d3p

E
uµp

µf0[1 + δf ] = n

i.e. δf does not contribute to ε or n
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Freeze-out from viscous fluid
Cooper-Frye still works

E
dN

dp3
=

∫
Σfo

dΣµ p
µf(x, p · u) =

∫
Σfo

dΣµ p
µf0[1 + δf ]

Grad 14-moment approximation (Boltzmann distribution)

δf = ε(x) + εµ(x)kµ + εµνk
µkν

Shear only, Landau matching gives

δf = εµνk
µkν =

1

2T 2(ε+ P )
πµνkµkν

Thus, even if velocity and temperature are the same, finite shear causes
different particle distributions

How to share πµν for each particle species?
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Region of validity
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c©Huichao Song

Corrections to
thermal
distributions
“uncomfortably
large” when
pT >∼ 2 GeV

δf ∝ p2
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Effect on v2

• massless particles

• Note: both change in flow and
distributions affect v2
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placeholder
A set of partial differential equations. . .
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placeholder
A set of partial differential equations. . .

We need

• Boundary conditions

– Initial state −→ Bjoern
– Final state −→ Piotr

• Equation of state −→ my next talk

• Transport coefficients −→ Piotr
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