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Neutrino mixing
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ν1,ν2 ,ν3 :  mass eigenstates of m = m1,m2 ,m3.
νe,ν µ ,ντ :  flavor eigenstates.
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c23=cosθ23, etc.
3 mixing angles (θ12, θ23, θ13) + 1 complex phase (δ) ←CP violation

PMNS matrix
(Pontecorvo-Maki-
Nakagawa-Sakata)
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Neutrino oscillation

0

P=1

P(νe→νe)
P(νe→νµ)

L/E
2hc/Δm2

sin22θ

IF θ≠0 ANDΔm2≠0, flavor transmutation occurs.
 P(νi→νj)=sin22θij ×sin2(1.27Δm2L/E) (2 flavor approx.)
　             Δm2 in (eV2), L/E in (km/GeV or m/MeV)

amplitude

wavelength

•3 mixing angles
θ12, θ23, θ13

•2 (independent) mass^2 
differences
Δm232=m32-m22
Δm221=m22-m12
(Δm231=Δm232+Δm221)

•1 complex phase（CPV) δ
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Oscillation parameters

sin2(2θ12)~0.8

Δm221~8×10-5eV2

ν1

ν2 ν3

sin2(2θ23)~1.0

|Δm232|~2.5×10-3eV2

sin2(2θ13) ~ 0.1

Δm231~Δm232

Solar-ν 
Reactor-ν

Atm-ν
Acc-ν

Reactor-ν
Acc-ν

• θ12 ~ 33°, θ23 ~ 45°, but θ13 ~ 9°
• |Δm232| >> |Δm221| (by factor ~30)

δCP
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unknown

Unmeasured <2011

mass ordering: 
m3 >> m2 > m1 or
m2 > m1 >> m3

unknown



Outstanding issues in 
neutrino physics

•PMNS matrix:
All 3 mixing angles θij are measured. 
 Octant of θ23 not yet known (> 45° or < 45°)
CP violation phase δCP is unknown.

•Neutrino masses:
Both mass2 differences Δm232 and Δm221 measured.
Sign(Δm232) still unknown - Mass Hierarchy (Mass Ordering)
 m3 >> m2 > m1 (normal) or m2 > m1 >> m3 (inverted)
Absolute mν not measurable with ν oscillation
→ 0ν2β (if Majorana)／direct β measurement (KATRIN) and 
    cosmological constraints on Σmν (ν osc.→ Σmν > 0.05 eV)
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T2K experiment in Japan
•Tokai (J-PARC) to Kamioka (SK)
Long-BaseLine accelerator ν exp.
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TokaiKamioka

Intense ~600 MeV νµ beam for 
neutrino oscillation studies

• High sensitivity search for θ13

• Precision measurement of θ23, Δm223

J-PARC

Super Kamiokande
“far” detector (FD)

295 km

~500 collaborators from
 58 institutions, 12 nations

The XXVth International Symposium on Lepton Photon Interactions at High Energies

see “T2K Experiment”
arXiv:1106.1238 submitted to NIM A
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T2K results on δCP
• Note: results from up to 2016 data (Run 1-7)
• See talks by T. Kobayashi today and by X. Lu
tomorrow for latest results (Run 1-8)

•δ=0 or π excluded at 90% C.L.
         νe                  anti-νe 
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sin2 θ23 ¼ 0.528. The νe (ν̄e) contamination in the ν̄e (νe)
sample is 17.4% (0.5%), and the proportion of the sample
expected to correspond to oscillated ν̄e (νe) events is 46.4%
(80.9%) for δCP ¼ −π=2. A more detailed description of
the candidate event selections can be found in previous
publications [14]. The ν̄e signal events are concentrated in
the forward direction with respect to the beam, unlike the
backgrounds (Fig. 3). Therefore, incorporating recon-
structed lepton angle information in the analysis increases
the sensitivity. The reconstructed neutrino energy spectra for
the νe and ν̄e samples is shown in Fig. 4.
The systematic errors concerning the detector behavior

are estimated using atmospheric neutrino and cosmic-ray
muon events. A sample of hybrid data-Monte Carlo events
is also used to evaluate uncertainties regarding π0 rejection.

Correlations between the uncertainties for the four samples
are taken into account in the fits.
The fractional variation of the number of expected events

for the four samples owing to the various sources of
systematic uncertainty are shown in Table II. A more in-
depth description of the sources of systematic uncertainty
in the fit is given in [14], although this reference does not
cover the updates discussed in previous sections.
Oscillation analysis.—The oscillation parameters

sin2 θ23, Δm2
32, sin

2 θ13, and δCP are estimated by perform-
ing a joint maximum-likelihood fit of the four far-detector
samples. The oscillation probabilities are calculated using
the full three-flavor oscillation formulas [39]. Matter effects
are included with an Earth density of ρ ¼ 2.6 g=cm3 [40].
As described previously, the priors for the beam flux and

neutrino interaction cross-section parameters are obtained
from the fit with the near-detector data. The priors [8] for
the solar neutrino oscillation parameters—whose impact is
almost negligible—are sin22θ12¼0.846"0.021, Δm2

21 ¼
ð7.53" 0.18Þ × 10−5 eV2=c4, and in some fits we use
sin2 2θ13 ¼ 0.085" 0.005 [8], called the “reactor meas-
urement.” Flat priors are used for sin2 θ23, Δm2

32, and δCP.
We use a procedure analogous to [15]: we integrate the

likelihood over the prior probability density function of the
nuisance parameters and we obtain the marginal likelihood
which depends only on the relevant oscillation parameters.We
define−2Δ lnL ¼ −2 ln½LðoÞ=Lmax& as the ratio between the
marginal likelihood at the point o of the relevant oscillation
parameter space and the maximum marginal likelihood.
We have conducted three analyses using different

far-detector event quantities and different statistical
approaches. All of them use the neutrino energy recon-

structed in the CCQE hypothesis (Erec) for the ν
ð−Þ

μ samples.
The first analysis uses Erec and the reconstructed angle
between the lepton and the neutrino beam direction, θlep,

of the ν
ð−Þ

e candidate samples and provides confidence
intervals using a hybrid Bayesian-frequentist approach
[41]. These results are shown in the following figures.
The second analysis is fully Bayesian and uses the lepton

momentum, plep, and θlep for the ν
ð−Þ

e samples to compute
credible intervals using the posterior probability. The third

analysis uses only Erec spectra for the ν
ð−Þ

e samples and a
Markov chain Monte Carlo method [42] to provide
Bayesian credible intervals. This analysis performs a
simultaneous fit of both the near- and far-detector data,
providing a validation of the extrapolation of the flux, cross
section, and detector systematic parameters from the near to
far detector. All three methods are in good agreement.
An indication of the sensitivity to δCP and the mass

ordering can be obtained from Table I. If CP violation is
maximal (δCP ¼ "π=2), the predicted variation of the total
number of events with respect to the CP conservation
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FIG. 3. The reconstructed lepton momentum and angle relative
to the beam at the far detector for the ν̄e sample signal (left) and
background (right) expectation with the data overlaid (blue
points).
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FIG. 4. The reconstructed neutrino energy at the far detector for
the νe (left) and ν̄e (right) candidate samples is shown together
with the expected distribution without oscillation (blue histo-
gram) and the best fit (red histogram).

TABLE II. Systematic uncertainty on the predicted event rate at
the far detector.

Source (%) νμ νe ν̄μ ν̄e

ND280-unconstrained
cross section

0.7 3.0 0.8 3.3

Flux and ND280-constrained
cross section

2.8 2.9 3.3 3.2

Super-Kamiokande detector systematics 3.9 2.4 3.3 3.1
Final or secondary
hadron interactions

1.5 2.5 2.1 2.5

Total 5.0 5.4 5.2 6.2
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place, the muon charge, and the final-state multiplicity.
For data taken in neutrino mode, only interactions with a
negatively charged muon are considered. For data taken in
antineutrino mode, there are separate categories for events
with positively charged (right-sign) and negatively charged
(wrong-sign) muon candidates. The wrong-sign candidates
are included because the larger neutrino cross section leads
to a non-negligible wrong-sign background in antineutrino
mode. In neutrino mode, there are three categories for
reconstructed final states: no pion candidate in the final
state (CC0π), one pion candidate in the final state (CC1π),
and all other CC candidates (CC other). In antineutrino
mode, events are divided into two categories based on the
final states: only the muon track exits the FGD to enter
the TPC (CC 1-track) and at least one other track enters the
TPC (CC N-track).
When fitting, the data are binned according to the

momentum of the muon candidate, pμ, and cos θμ, where
θμ is the angle of the muon direction relative to the central
axis of the detector, roughly 1.7° away from the incident
(anti)neutrino direction. A binned maximum likelihood fit
is performed in which the neutrino flux and interaction
model parameters are allowed to vary. Nuisance parameters
describing the systematic errors in the ND280 detector

model—the largest of which is pion interaction modeling—
are marginalized in the fit.
The fitted pμ and cos θμ distributions for the FGD2

CC0π and CC 1-track categories are shown in Fig. 2.
Acceptable agreement between the postfit model and data
is observed for both kinematic variables, with a p value of
0.086. The best-fit fluxes are increased with respect to the
original flux model by 10%–15% near the flux peak. This
is driven by the prefit deficit in the prediction for the
CC0π and CC other samples. The fitted value for the axial
mass in the CCQE model is 1.12 GeV=c2, compared to
1.24 GeV=c2 in a previous fit where the 2p-2h model and
RPA corrections were not included [14]. The lower axial
mass decreases the interaction rate, driving the increased
flux prediction. The fit to ND280 data reduces the
uncertainty on the event-rate predictions at the far detector
due to uncertainties on the flux and ND280-constrained
interaction model parameters from 10.9% (12.4%) to 2.9%
(3.2%) for the νe (ν̄e) candidate sample.
Far-detector data.—At the far detector, events are

extracted that lie within ½−2; 10" μs relative to the beam
arrival. Fully contained eventswithin the fiducial volume are
selected by requiring that no hit cluster is observed in the
outer detector volume, that the distance from the recon-
structed vertex to the inner detector wall is larger than 2 m,
and that the total observed charge is greater than the
equivalent quantity for a 30-MeV electron. The CCQE
component of our sample is enhanced by selecting events
with a single Cherenkov ring. The νμ=ν̄μ CCQE candidate
samples are then selected by requiring a μ-like ring using a
particle identification likelihood, zero or one decay electron
candidates, and muon momentum greater than 200 MeV=c
to reduce pion background. Post selection, 135 and 66
events remain in the νμ and ν̄μ candidate samples,
respectively, while if jΔm2

32j ¼ 2.509 × 10−3 eV2=c4 and
sin2 θ23 ¼ 0.528 (i.e., maximal disappearance), 135.5 and
64.1 events are expected. The νe=ν̄e CCQE candidate
samples are selected by requiring an e-like ring and zero
decay electron candidates, not π0-like and reconstructed
energy less than 1.25 GeV. The total number of events
remaining in these samples is presented in Table I with
their respective expectation for different values of δCP,
sin2 2θ13 ¼ 0.085, jΔm2

32j ¼ 2.509 × 10−3 eV2=c4, and

E
ve

nt
s

1000

2000

 POT20 10× beam 5.82 νT2K

Data
Pre-fit Model
Post-fit Model E

ve
nt

s

2000

4000

 POT20 10× beam 5.82 νT2K

E
ve

nt
s

100

200

300

400
 POT20 10× beam 2.84 νT2K

E
ve

nt
s

500

1000
 POT20 10× beam 2.84 νT2K

Muon Momentum (GeV/c)

E
ve

nt
s

0

100

200

0.0 0.5 1.0 1.5 2.0 >2.4

 POT20 10× beam 2.84 νT2K

µθcos

E
ve

nt
s

0

200

400

<0.5 0.6 0.8 1.0

 POT20 10× beam 2.84 νT2K

FIG. 2. The FGD2 data, prefit predictions and postfit predic-
tions binned in pμ (left) and cos θμ (right) for the neutrino
mode CC0π (top), antineutrino mode CC 1-track μþ (middle)
and antineutrino mode CC 1-track μ− (bottom) categories. The
overflow bins are integrated out to 10 000 MeV=c for pμ and
−1.0 for cos θμ respectively.

TABLE I. Number of νe and ν̄e events expected for various
values of δCP and both mass orderings compared to the observed
numbers.

Normal δCP ¼ −π=2 δCP ¼ 0 δCP ¼ π=2 δCP ¼ π Observed

νe 28.7 24.2 19.6 24.1 32
ν̄e 6.0 6.9 7.7 6.8 4

Inverted δCP ¼ −π=2 δCP ¼ 0 δCP ¼ π=2 δCP ¼ π Observed
νe 25.4 21.3 17.1 21.3 32
ν̄e 6.5 7.4 8.4 7.4 4
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hypothesis (δCP ¼ 0, π) is about 20%. The different mass
orderings induce a variation of the number of expected
events of about 10%. Matter effects are negligible for the νμ
and ν̄μ candidate samples, while they affect the number of
events in the νe and ν̄e candidate samples by about 6% and
4%, respectively, for maximal CP violation.
A series of fits are performed where one or two

oscillation parameters are determined and the others are
marginalized. Confidence regions are set using the constant
−2Δ lnL method [8]. In the first fit confidence regions in
the sin2 θ23 − jΔm2

32j plane (Fig. 5) were computed using
the reactor measurement of sin2 θ13. The best-fit values
are sin2 θ23 ¼ 0.532 and jΔm2

32j ¼ 2.545 × 10−3 eV2=c4

(sin2 θ23 ¼ 0.534 and jΔm2
32j ¼ 2.510 × 10−3 eV2=c4) for

the normal (inverted) ordering. The goodness of fit for all
three analyses is better than 80%. The result is consistent
with maximal disappearance. The T2K data weakly prefer
the second octant (sin2 θ23 > 0.5) with a posterior proba-
bility of 61%.
Confidence regions in the sin2 θ13 − δCP plane are

computed independently for both mass-ordering hypoth-
eses (Fig. 6) without using the reactor measurement. The
addition of antineutrino samples at Super-K gives the first
sensitivity to δCP from T2K data alone. There is good
agreement between the T2K result and the reactor meas-
urement for sin2 θ13. For both mass-ordering hypotheses,
the best-fit value of δCP is close to −π=2.
Confidence intervals for δCP are obtained using the

Feldman-Cousins method [47]. The parameter sin2 θ13 is
marginalized using the reactor measurement. The best-fit
value is obtained for the normal ordering and
δCP ¼ −1.791, close to maximal CP violation (Fig. 7).
For inverted ordering the best-fit value of δCP is −1.414.
The hypothesis of CP conservation (δCP ¼ 0, π) is
excluded at 90% C.L. and δCP ¼ 0 is excluded at more
than 2σ. The δCP confidence intervals at 90% C.L. are
(−3.13, −0.39) for normal ordering and (−2.09, −0.74) for
inverted ordering. The Bayesian credible interval at 90%,
marginalizing over the mass ordering, is (−3.13, −0.21).
The normal ordering is weakly favored over the inverted
ordering with a posterior probability of 75%.
Sensitivity studies show that, if the true value of δCP is

−π=2 and the mass ordering is normal, the fraction of
pseudoexperiments where CP conservation (δCP ¼ 0, π) is
excluded with a significance of 90% C.L. is 17.3%, with
the amount of data used in this analysis.
Conclusions.—T2K has performed the first search for

CP violation in neutrino oscillations using νμ → νe appear-
ance and νμ → νμ disappearance channels in neutrino and
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hypothesis (δCP ¼ 0, π) is about 20%. The different mass
orderings induce a variation of the number of expected
events of about 10%. Matter effects are negligible for the νμ
and ν̄μ candidate samples, while they affect the number of
events in the νe and ν̄e candidate samples by about 6% and
4%, respectively, for maximal CP violation.
A series of fits are performed where one or two

oscillation parameters are determined and the others are
marginalized. Confidence regions are set using the constant
−2Δ lnL method [8]. In the first fit confidence regions in
the sin2 θ23 − jΔm2

32j plane (Fig. 5) were computed using
the reactor measurement of sin2 θ13. The best-fit values
are sin2 θ23 ¼ 0.532 and jΔm2

32j ¼ 2.545 × 10−3 eV2=c4

(sin2 θ23 ¼ 0.534 and jΔm2
32j ¼ 2.510 × 10−3 eV2=c4) for

the normal (inverted) ordering. The goodness of fit for all
three analyses is better than 80%. The result is consistent
with maximal disappearance. The T2K data weakly prefer
the second octant (sin2 θ23 > 0.5) with a posterior proba-
bility of 61%.
Confidence regions in the sin2 θ13 − δCP plane are

computed independently for both mass-ordering hypoth-
eses (Fig. 6) without using the reactor measurement. The
addition of antineutrino samples at Super-K gives the first
sensitivity to δCP from T2K data alone. There is good
agreement between the T2K result and the reactor meas-
urement for sin2 θ13. For both mass-ordering hypotheses,
the best-fit value of δCP is close to −π=2.
Confidence intervals for δCP are obtained using the

Feldman-Cousins method [47]. The parameter sin2 θ13 is
marginalized using the reactor measurement. The best-fit
value is obtained for the normal ordering and
δCP ¼ −1.791, close to maximal CP violation (Fig. 7).
For inverted ordering the best-fit value of δCP is −1.414.
The hypothesis of CP conservation (δCP ¼ 0, π) is
excluded at 90% C.L. and δCP ¼ 0 is excluded at more
than 2σ. The δCP confidence intervals at 90% C.L. are
(−3.13, −0.39) for normal ordering and (−2.09, −0.74) for
inverted ordering. The Bayesian credible interval at 90%,
marginalizing over the mass ordering, is (−3.13, −0.21).
The normal ordering is weakly favored over the inverted
ordering with a posterior probability of 75%.
Sensitivity studies show that, if the true value of δCP is

−π=2 and the mass ordering is normal, the fraction of
pseudoexperiments where CP conservation (δCP ¼ 0, π) is
excluded with a significance of 90% C.L. is 17.3%, with
the amount of data used in this analysis.
Conclusions.—T2K has performed the first search for

CP violation in neutrino oscillations using νμ → νe appear-
ance and νμ → νμ disappearance channels in neutrino and
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T 2 K - I I :  P H Y S I C S  P O T E N T I A L

• Assumes ~50% increase in effective statistics/POT 

• increase horn current to design (320 kA): ~+10% 

• SK multi-ring samples and fiducial volume increase: ~+40% 

• reduction of systematic errors 

• ~3 σ sensitivity to CP violation for favourable (and 
currently favoured) parameters 

• Precise measurement of θ23: 

• octant resolution if θ23 at edge of currently allowed values 

• otherwise, measure θ23 to ~1.7° or better
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that the T2K-II data is taken in roughly equal alternating periods of ⌫-mode and ⌫̄-mode932

(with true normal MH and �
CP

= �⇡/2) is given in Fig. 22.933
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FIG. 22: Sensitivity to CP violation as a function of POT with a 50% improvement

in the e↵ective statistics, assuming the true MH is the normal MH and the true value

of �
CP

= �⇡/2. The plot on the left compares di↵erent true values of sin2 ✓23, while

that on the right compares di↵erent assumptions for the T2K-II systematic errors with

sin2 ✓23 = 0.50.

Above study assumes that the ⌫-mode and the ⌫̄-mode share the same running time.934

The running time configuration would be optimized to enhance the significance for the CP935

violation resolving. However the CP violation resolving depends on the capability to solve936

other degeneracies such as the mass hierarchy and the ✓23 octant. Thus optimal option937

requires a meticulous consideration over the large space of neutrino oscillation parameters.938

Here the study is to validate that the configuration of ⌫ : ⌫̄ = 50 : 50 running time ratio is939

not worse choice after all. Figure 23 shows the sensitivity to the CP violation plotted as a940

function of POT with seven values of sin2 ✓23 mixed with seven options of the ⌫ : ⌫̄ running941

time ratios (in percentage). In this study, only the statistic uncertainty is considered and942

no e↵ective statistics improvement is applied. It can be observed that the configuration in943

which the ⌫-mode is dominant, gives the worst sensitivity to the CP violation if the true944

value of ✓23 is in the low octant. This is explained by the fact that the ⌫-mode running945

alone has limited power to resolve the ✓23 octant. On other hand, the ⌫̄-mode running has946

higher power to resolve the ✓23 octant. However, this running mode su↵ers a decrease of947

statistics. After all, taking data equally in ⌫-mode and ⌫̄-mode is not the most optimal948

configuration for every true value of sin2 ✓23 but gives high sensitivity to the CP violation949

in overall range of sin2 ✓23.950
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(b) Assuming true sin2 ✓23 = 0.60.
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(c) Assuming true sin2 ✓23 = 0.50.

FIG. 25: Expected 90% C.L. sensitivity to �m2
32 and sin2 ✓23 with the 2016 systematic

error. The POT exposure accumulated by 2014 corresponds to 6.9 ⇥ 1020 POT ⌫- +

4.0 ⇥ 1020 POT ⌫̄-mode. For the ultimate T2K-II exposure of 20 ⇥ 1021 POT, a 50%

increase in e↵ective statistics is assumed.

As observed, the octant degeneracy of ✓23 mixing angle can be resolved by the proposed968

T2K-II data at some levels if ✓23 is not maximum. More specifically, Fig. 26 shows that969

the octant degeneracy can be solved by more than 3� if the ✓23 is in the high octant,970

sin2 ✓23=0.6. For the lower octant case, sin2 ✓23=0.43, the significance of resolving octant971

degeneracy is also close to 3�. Fig. 26 also shows uncertainty on sin2 ✓23 as function of972

POT. If sin2 ✓23 is maximum, the expected 1� precision of sin2 ✓23 determined by the973

proposed T2K-II is 1.7�. For the case of sin2 ✓23 = 0.43, 0.6 the uncertainty is 0.5�, 0.7�974

respectively. The uncertainty of ✓23 in the case of maximum is much higher than the other975

cases since the survival probability close to sin2 ✓23 ⇠ 0.5 is basically independent of ✓23.976
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FIG. 20: Sensitivity to CP violation as a function of true �
CP

for the full T2K-II exposure

of 20⇥ 1021 POT with a 50% improvement in the e↵ective statistics, 2016 systematics are

employed, and assuming that the true MH is the normal MH. The left plot is with assump-

tion of unknown mass hierarchy and the right is with known mass hierarchy. Sensitivities

at three di↵erent values of sin2 ✓23 (0.43, 0.5 and 0.6) are shown.
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FIG. 21: Sensitivity to CP violation as a function of true �
CP

for the full T2K-II exposure

of 20 ⇥ 1021 POT with a 50% improvement in the e↵ective statistics, a reduction of the

systematic uncertainties to 2/3 of their current size, and assuming that the true MH is the

normal MH. The left plot is with assumption of unknown mass hierarchy and the right is

with known mass hierarchy. Sensitivities at three di↵erent values of sin2 ✓23 (0.43, 0.5 and

0.6) are shown.

The expected evolution of the sensitivity to CP violation as a function of POT assuming931
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FIG. 20: Sensitivity to CP violation as a function of true �
CP

for the full T2K-II exposure

of 20⇥ 1021 POT with a 50% improvement in the e↵ective statistics, 2016 systematics are

employed, and assuming that the true MH is the normal MH. The left plot is with assump-

tion of unknown mass hierarchy and the right is with known mass hierarchy. Sensitivities

at three di↵erent values of sin2 ✓23 (0.43, 0.5 and 0.6) are shown.
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FIG. 21: Sensitivity to CP violation as a function of true �
CP

for the full T2K-II exposure

of 20 ⇥ 1021 POT with a 50% improvement in the e↵ective statistics, a reduction of the

systematic uncertainties to 2/3 of their current size, and assuming that the true MH is the

normal MH. The left plot is with assumption of unknown mass hierarchy and the right is

with known mass hierarchy. Sensitivities at three di↵erent values of sin2 ✓23 (0.43, 0.5 and

0.6) are shown.

The expected evolution of the sensitivity to CP violation as a function of POT assuming931

external hierarchy inputhierarchy unknown
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P4.022 M. Friend

P3.025 B. Quilain

T2K→T2K-II→T2HK
• T2K was proposed with 7.8E20 POT
‒ So far accumulated 1.5E20

• T2K-II (till ~2026) to collect 20E20
‒ MR Power Supply upgrade (>750kW)
‒  ~3σ evidence if δ~ -90deg

• T2HK (from ~2026) with 1.3MW beam
‒ Hyper-K as the Far Detector
‒ Definite observation of CP violation

8

Figure 1: Anticipated MR beam power and POT accumulation vs. calendar year.

in this document, including further improvements to the MR beam power, neutrino beam
line upgrades, and analysis developments to improve statistical and systematic uncertain-
ties. We then discuss the physics potential resulting from these combined developments.

2 Data accumulation Plan and Improvement of e↵ective
Statistics

Projected MR beam power and POT accumulation The MR beam power has
steadily increased since the start of the operation. In June 2015February2016, 360390 kW
beam with 1.682.0⇥1014 protons-per-pulse (ppp) every 2.48 seconds was successfully pro-
vided to the neutrino beamline. Discussions with the J-PARC Accelerator Group have
resulted in a plan to achieve the design intensity of 750 kW by reducing the repetition
cycle to 1.3 seconds. This requires an upgrade to the power supplies for the MR main
magnets, RF cavities, and some injection and extraction devices by January 2019. Stud-
ies to increase the ppp are also in progress, with 2.73 ⇥ 1014 ppp equivalent beam with
acceptable beam loss already demonstrated in a test operation with two bunches.

Based on these developments, MR beam power prospects were updated and presented
in the accelerator report at the last PAC in July 2015[12] and anticipated beam power
of 1.3 MW with 3.2⇥1014 ppp and a repetition cycle of 1.16 seconds arewere presented
at international workshops[13, 14]. A possible data accumulation scenario is shown in
Fig. 1, where 5 months of neutrino beam operation each year and realistic running time
e�ciency are assumed. We expect to accumulate 20⇥1021 POT by JFY2026 with 5 months
operation each year and by JFY2025 with 6 months operation each year as requested by
T2K.

Beamline upgrade The beam intensity in the current neutrino beam facility is limited
to 3.3 ⇥ 1014 ppp by the thermal shock induced by the beam on the target and beam
window. The MR power upgrade plan allows 1.3 MW beam operation without increasing
the ppp. However, the beamline cooling capacity for components like the target and
helium vessel is su�cient for up to 750 kW; these would need to be upgraded to accept
1.3 MW beam operation.

The T2K horns were originally designed to be operated at 320 kA current, but so far

2

H.A. Tanaka, Neutrino 2016

T2K-II Physics Potential



Hyper-Kamiokande
•2x260 kton tank (D74m×H60m)
•190 kton fiducial mass/tank 
(~×10 of Super-K)

•Aim for quick start w/ 1 tank
•40,000 PMTs with 2x eff.
•Acc. ν: δCP measurement
•Atm. ν: mass hierarchy
•Astronomical ν: Supernova
and solar ν
•Observe nucleon decay

9

186 kton fiducial mass : ~10×SK

new 50cm photosensors
×2 higher photon sensitivity than SK
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CP violation with T2HK
•Compare νμ→νe appearance for ν and anti-ν
•High statistics: no need to rely on reactor θ13

10

for δCP = 0 Signal
νµàνe CC

Wrong sign
appearance νµ /νµ CC Beam νe /νe

contamination NC

ν beam

ν beam

1,643 15 7 259 134

1,183 206 4 317 196

Number of signal candidate events,  1.3 MW × 10 years (108 sec), ν:ν = 1:3
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FIG. 34. Oscillated ⌫e flux relative to the non-oscillated flux as a function of neutrino energy for the

upward-going neutrinos with zenith angle cos⇥⌫ = �0.8. ⌫̄e is not included in the plots. Thin solid

lines, dashed lines, and dotted lines correspond to the solar term, the interference term, and the ✓13

resonance term, respectively (see Eq. 5). Thick solid lines are total fluxes. Parameters are set as

(sin2 ✓12, sin
2 ✓13, sin

2 ✓23, �,�m2
21,�m2

32) = (0.31, 0.025, 0.6, 40�, 7.6⇥10�5eV2,+2.4⇥10�3eV2) unless oth-

erwise noted. The ✓23 octant e↵ect can be seen by comparing (a) (sin2 ✓23 = 0.4) and (b) (sin2 ✓23 = 0.6). �

value is changed to 220� in (c) to be compared with 40� in (b). The mass hierarchy is inverted only in (d)

so ✓13 resonance (MSW) e↵ect disappears in this plot. For the inverted hierarchy the MSW e↵ect should

appear in the ⌫̄e flux, which is not shown in the plot.

happens with neutrinos in the case of normal mass hierarchy (�m2

32

> 0), and with anti-neutrinos

in the case of inverted mass hierarchy (�m2

32

< 0).

In order to demonstrate the behavior of these three terms, Fig. 34 shows how the ⌫e flux changes

as a function of neutrino energy based on a numerical calculation of oscillation probabilities, in

which the matter density profile in the Earth is taken into account [25, 68]. We adopted an

Earth model constructed by the median density in each of the dominant regions of the preliminary

reference Earth model (PREM) [69]: inner core (0  r < 1220km) 13.0 g/cm3, outer core (1220 

r < 3480km) 11.3 g/cm3, mantle (3480  r < 5701km) 5.0 g/cm3, and the crust (5701  r <

6371km) 3.3 g/cm3. In Fig. 34 dotted lines correspond to the ✓
13

resonance term (the third term

in Eq. 5), which could make a significant contribution in the 5 ⇠ 10 GeV region if sin2 ✓
13

is a few

“Fractional change of upward νe flux (cosΘzenith=-0.8)”

sin2θ23=0.4 or 0.6

CP=40o or 220o

Hierarchy is 
NH or IH

Resonance in νe 
(not shown) in the 

case of IH.

Through the matter effect in the Earth, we study on
• Mass hierarchy : resonance in multi-GeV νe or νe 
• CP δ               : interference btw two Δm2 driven oscill.
• θ23 octant        : magnitude of the resonance

3-flavor oscillation studyAccessing M.H. by atm-ν
•Matter effect: resonant enhancement of 
νe oscillation at certain energy/zenith-angle

•Effect reverses for Normal and Inverted H. 

11  M. Shiozawa, NuTel 2017



Atmospheric ν in Hyper-K
•Combining Atm-ν and Acc-ν data
　 wrong MH rejection        wrong octant rejection

•

•> 3σ determination for any θ23
•Good chance to determine θ23  octant

12
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Neutrino Astrophysics with HK
•Supernova burst ν
‒For SN@10kpc, 50-80k evts
‒1deg. pointing resolution
‒Study detailed mechanism

•Supernova Relic Neutrinos
‒Expect SK-Gd to discover 1st
‒High-stat measurement by HK
‒History of star/BH formation

•Solar ν and more ... 13

SASI
Standing Accretion Shock Instability



Proton decay in HK
•Great potential for e+π0 mode, 
reaching 1035 years sensitivity

•Almost BG free
•Complementary to DUNE, who 
is good at νK mode

14

Hyper-K

DUNE
Super-K HK
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Hyper-K

DUNE
Super-K

atmν BG

BG FREE measurement

τp/Br = 1035 years! 

p→e+π0, 3σ sensitivity p→νK+, 3σ sensitivity-

p→e+π0, @current SK limit (1.7×1034y)



Photo-sensor R&D
•New “Box & Line” dynode PMT 
developed with Hamamatsu
•2x efficiency, timing resolution, 
pressure tolerance

•New PMT cover developed
•As overseas contribution, also 
multi-PMT modules are in R&D

15

New 50cmϕ PMT for Hyper-K

• Twice better photo-detection 
efficiency than SK PMTs

• Timing resolution (TTS): 1.1ns
• cf. SK PMT: 2.1ns

• Higher pressure tolerance: >80m
6

96 III HYPER-KAMIOKANDE DETECTOR

2.1.3. Performance of Single Photoelectron Detection1

The single photoelectron pulse in a HQE B&L PMT has a 6.7 ns rise time (10% – 90%) and 13.02

ns FWHM without ringing, which is faster than the 10.6 ns rise time and 18.5 ns FWHM in the3

Super-K PMT. The time resolution for single PEs is 1.1 ns in � for the fast left side of the transit4

time peak in Figure 59 and 7.3 ns at FWHM, which is about half of the Super-K PMTs. This5

would be an important factor to improve the reconstruction performance of events in Hyper-K.6

The nominal gain is 107 and can be adjusted for several factors in a range between 1500 V to7

2200 V. Figure 60 shows the charge distribution, where the 35% resolution in � of the single PE is8

better compared to the 50% of the Super-K PMT. The peak-to-valley ratio is about 4, defined by9

the ratio of the height of the single PE peak to that of the valley between peaks.10
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FIG. 59. Transit time distribution at single pho-

toelectron, compared with the Super-K PMT in

dotted line.
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FIG. 60. Single photoelectron distribution with

pedestal, compared with the Super-K PMT in

dotted line.

2.1.4. Gain Stability11

Because the Hyper-K detector is sensitive to a wide energy range of physics, the PMT is required12

to have a wide dynamic range. The Super-K PMTs have an output linearity up to 250 PEs in charge13

by the specifications and about 700 PEs measured in Super-K (with up to 5% distortion)[117],14

while the linearity of the HQE B&L PMT was measured to be within 5% up to 340 PEs as seen in15

Figure 61. Even with more than 1,000 PEs, the output is not saturated and the number of PEs can16

be calculated by correcting the non-linear response. The linearity range depends on the dynode17

current, and can be optimized with changing the resistor values in the bleeder circuit. This result18

demonstrates su�cient detection capabilities in the wide MeV – GeV region as in Super-K, as long19
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• 1光子感度２倍、時間精度２倍を達成。
• 検出器の性能・物理感度に非常に大きな
インパクト。
• 感度を変えずに検出器を小さくできる可
能性が出てきた。

新型光センサー

Super-K PMT

Hyper-K PMT

1光
子
検
出
効
率

光入射位置（度）

96 III HYPER-KAMIOKANDE DETECTOR

2.1.3. Performance of Single Photoelectron Detection1

The single photoelectron pulse in a HQE B&L PMT has a 6.7 ns rise time (10% – 90%) and 13.02

ns FWHM without ringing, which is faster than the 10.6 ns rise time and 18.5 ns FWHM in the3

Super-K PMT. The time resolution for single PEs is 1.1 ns in � for the fast left side of the transit4

time peak in Figure 59 and 7.3 ns at FWHM, which is about half of the Super-K PMTs. This5

would be an important factor to improve the reconstruction performance of events in Hyper-K.6

The nominal gain is 107 and can be adjusted for several factors in a range between 1500 V to7

2200 V. Figure 60 shows the charge distribution, where the 35% resolution in � of the single PE is8

better compared to the 50% of the Super-K PMT. The peak-to-valley ratio is about 4, defined by9

the ratio of the height of the single PE peak to that of the valley between peaks.10
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FIG. 59. Transit time distribution at single pho-

toelectron, compared with the Super-K PMT in

dotted line.
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FIG. 60. Single photoelectron distribution with

pedestal, compared with the Super-K PMT in

dotted line.

2.1.4. Gain Stability11

Because the Hyper-K detector is sensitive to a wide energy range of physics, the PMT is required12

to have a wide dynamic range. The Super-K PMTs have an output linearity up to 250 PEs in charge13

by the specifications and about 700 PEs measured in Super-K (with up to 5% distortion)[117],14

while the linearity of the HQE B&L PMT was measured to be within 5% up to 340 PEs as seen in15

Figure 61. Even with more than 1,000 PEs, the output is not saturated and the number of PEs can16

be calculated by correcting the non-linear response. The linearity range depends on the dynode17

current, and can be optimized with changing the resistor values in the bleeder circuit. This result18

demonstrates su�cient detection capabilities in the wide MeV – GeV region as in Super-K, as long19

as it is corrected according to the response curve.20
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• 1光子感度２倍、時間精度２倍を達成。
• 検出器の性能・物理感度に非常に大きな
インパクト。
• 感度を変えずに検出器を小さくできる可
能性が出てきた。
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96 III HYPER-KAMIOKANDE DETECTOR

2.1.3. Performance of Single Photoelectron Detection1

The single photoelectron pulse in a HQE B&L PMT has a 6.7 ns rise time (10% – 90%) and 13.02

ns FWHM without ringing, which is faster than the 10.6 ns rise time and 18.5 ns FWHM in the3

Super-K PMT. The time resolution for single PEs is 1.1 ns in � for the fast left side of the transit4

time peak in Figure 59 and 7.3 ns at FWHM, which is about half of the Super-K PMTs. This5

would be an important factor to improve the reconstruction performance of events in Hyper-K.6

The nominal gain is 107 and can be adjusted for several factors in a range between 1500 V to7

2200 V. Figure 60 shows the charge distribution, where the 35% resolution in � of the single PE is8

better compared to the 50% of the Super-K PMT. The peak-to-valley ratio is about 4, defined by9

the ratio of the height of the single PE peak to that of the valley between peaks.10
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FIG. 59. Transit time distribution at single pho-

toelectron, compared with the Super-K PMT in

dotted line.

Charge [photoelectron]
-1 0 1 2 3

En
tri

es
 (a

.u
.) 50cm high-QE box&line PMT

50cm Super-K PMT

50cm high-QE box&line PMT

50cm Super-K PMT

50cm high-QE box&line PMT

50cm Super-K PMT

50cm high-QE box&line PMT

50cm Super-K PMT

FIG. 60. Single photoelectron distribution with

pedestal, compared with the Super-K PMT in

dotted line.

2.1.4. Gain Stability11

Because the Hyper-K detector is sensitive to a wide energy range of physics, the PMT is required12

to have a wide dynamic range. The Super-K PMTs have an output linearity up to 250 PEs in charge13

by the specifications and about 700 PEs measured in Super-K (with up to 5% distortion)[117],14

while the linearity of the HQE B&L PMT was measured to be within 5% up to 340 PEs as seen in15

Figure 61. Even with more than 1,000 PEs, the output is not saturated and the number of PEs can16

be calculated by correcting the non-linear response. The linearity range depends on the dynode17

current, and can be optimized with changing the resistor values in the bleeder circuit. This result18

demonstrates su�cient detection capabilities in the wide MeV – GeV region as in Super-K, as long19

as it is corrected according to the response curve.20
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be calculated by correcting the non-linear response. The linearity range depends on the dynode17
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2.1.3. Performance of Single Photoelectron Detection1

The single photoelectron pulse in a HQE B&L PMT has a 6.7 ns rise time (10% – 90%) and 13.02

ns FWHM without ringing, which is faster than the 10.6 ns rise time and 18.5 ns FWHM in the3

Super-K PMT. The time resolution for single PEs is 1.1 ns in � for the fast left side of the transit4

time peak in Figure 59 and 7.3 ns at FWHM, which is about half of the Super-K PMTs. This5

would be an important factor to improve the reconstruction performance of events in Hyper-K.6

The nominal gain is 107 and can be adjusted for several factors in a range between 1500 V to7

2200 V. Figure 60 shows the charge distribution, where the 35% resolution in � of the single PE is8

better compared to the 50% of the Super-K PMT. The peak-to-valley ratio is about 4, defined by9

the ratio of the height of the single PE peak to that of the valley between peaks.10
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2.1.4. Gain Stability11

Because the Hyper-K detector is sensitive to a wide energy range of physics, the PMT is required12

to have a wide dynamic range. The Super-K PMTs have an output linearity up to 250 PEs in charge13

by the specifications and about 700 PEs measured in Super-K (with up to 5% distortion)[117],14

while the linearity of the HQE B&L PMT was measured to be within 5% up to 340 PEs as seen in15

Figure 61. Even with more than 1,000 PEs, the output is not saturated and the number of PEs can16

be calculated by correcting the non-linear response. The linearity range depends on the dynode17

current, and can be optimized with changing the resistor values in the bleeder circuit. This result18

demonstrates su�cient detection capabilities in the wide MeV – GeV region as in Super-K, as long19

as it is corrected according to the response curve.20

ー Hyper-Kー Super-K

Time [nsec]

Transit time (ns)

Charge (p.e.)

DetecDon0efficiency�
High0efficiency0brings0beder0HK0performance0of0momentum,0
energy,0parDcle0ID,0and0improves0low0energy0physics0especially.00
•  High0detecDon0efficiency0was0confirmed0in0measurement.�

16/02/16� Hyper&Kamiokande:0Photo&sensor0(Y.Nishimura)� ��

F Photosensors 93

Shape Hemispherical

Photocathode area 50 cm diameter (20 inches)

Bulb material Borosilicate glass (⇠ 3 mm)

Photocathode material Bialkali (Sb-K-Cs)

Quantum e�ciency 30 % typical at � = 390 nm

Collection e�ciency 95 % at 107 gain

Dynodes 10 stage box-and-line type

Gain 107 at ⇠ 2000 V

Dark pulse rate ⇠ 8 kHz at 107 gain (13 Celsius degrees, after stabilization for a long period)

Transit time spread 2.7 nsec (FWHM) for single photoelectron signals

Weight 7.5 kg (without cable)

Volume 61,050 cm3

Pressure tolerance 9 kg/cm2 water proof

TABLE XV. Specifications of the 50 cm R12860-HQE PMT by Hamamatsu.

2.1.2. Detection E�ciency

The total detection e�ciency of the HQE B&L PMT is twice as high as the conventional R3600

(Super-K PMT). Figure 57 shows the measured quantum e�ciency (QE) of several HQE B&L

PMTs as a function of wavelength compared with a typical QE of the Super-K PMT in dotted

line. After several iterations to improve the QE of the large 50 cm bulb by Hamamatsu, a QE of

30% was achieved at peak wavelength of 390 nm, compared to the 22% of the Super-K PMT.
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FIG. 57. Measured QE for six high-QE R12860 (solid lines) and a normal R3600 (dashed line).

If the sensitive photocathode area with a collection e�ciency (CE) greater than 50% is com-

pared, the HQE B&L PMT has an increased area with a diameter of 49.2 cm, compared to 46 cm

in case of the Super-K PMT and 43.2 cm in the KamLAND PMT. Compared with 73% CE of the

94 II.2 HYPER-KAMIOKANDE DETECTOR

Super-K PMT within the 46 cm area, the HQE B&L PMT reaches 95% in the same area and still

keeps a high e�ciency of 87% even in the full 50 cm area. This high CE was achieved by optimizing

the glass curvature and the focusing electrode, as well as the use of a box-and-line dynode. In the

Super-K Venetian blind dynode, the photoelectron sometimes misses the first dynode while the

wide first box dynode of the box-and-line accepts almost all the photoelectrons. This also helps

improving the single photoelectron (PE) charge resolution, which then improves the hit selection

e�ciency at a single PE level. By a measurement at the single PE level, we confirmed the CE

improvement by a factor of 1.4 compared with the Super-K PMT, and 1.9 in the total e�ciency

including HQE. Figure 58 shows that the CE response is quite uniform over the whole PMT surface

in spite of the asymmetric dynode structure.

A relative CE loss in case of a 100 mG residual Earth magnetic field is at most 2% in the worst

direction, or negligible when the PMT is aligned to avoid this direction on the tank wall. The

reduction of geomagnetism up to 100 mG can be achieved by active shielding by coils.
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FIG. 58. Relative single photoelectron detection e�ciency as a function of the position in the photocathode,

where a position angle is zero at the PMT center and ±90� at the edges. The dashed line is the scan along

the symmetric line of the box-and-line dynode whereas the solid line is along the perpendicular direction of

the symmetric line. The detection e�ciency represents QE, CE and cut e�ciency of the single photoelectron

at 0.25 PE. A HQE B&L PMT with a 31% QE sample shows a high detection e�ciency by a factor of two

compared with normal QE Super-K PMTs (QE = 22%, based on an average of four samples).

Quantum Efficiency (QE)� Total Detection Efficiency of 1pe�

22% → 30% at peak�
and Collection Efficiency (CE)  
73% → 95% (46cmΦ area)�

In total, detection efficiency 
  (=QE x CE x 1pe hit discrimination) 
                       becomes double.�

high-QEs (HQE)�

SK�

Hyper-K PMT

Super-K PMT

~2

Box & line dynode PMTPhoto-detection efficiency (1p.e.)

•１光子感度２倍、時間精度２倍を達成
• 時間分解能: 2.1ns→1.1ns

• 電荷分解能: 50%→35%

 

MULTI-PMTS

13J Wilson, TAUP 2017 

Modular approach to PMT instrumentation. 
• Array of small (~3’’) PMTs.
• Waterproofing, pressure protection, reduced cabling. 
• Readout electronics, monitoring, calibration inside. 
• Directional information - improved vertex resolution. 
Leveraging from KM3NeT/IceCube mPMT design. 
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Maruyama�

Tochibora mine�

Wasabo�

Mozumi mine�

Kamioka 
Mining and 
Smelting 
Company�

Masutani�

City of 
Kamioka�

HK candidate site�

Nijuugo-yama�

N�

• The candidate site locates under Mt. Nijugo-yama
• ~8km south from Super-K
• Identical baseline (295km) and off-axis angle (2.5deg) to T2K

• Overburden ~650m (~1755 m.w.e.)

Detector site

Candidate site
•8 km south of Super-K
•Geological surveys with boring and
seismic wave analysis
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Intermediate water detector
• Measure ν+H2O events at varying off-axis angles (i.e. varying known ν 
spectra) @1~2 km, reducing systematics together with ND280 upgrade

• Superpose and predict interaction at Hyper-K (after oscillation!)
• Proposed as J-PARC E61 with international collaboration

17

OFF-AXIS SPANNING

11J Wilson, TAUP 2017 



Project status

•Proto-collaboration formed since 2015
‒ 300 members from 15 countries (70% overseas)

•Selected by Science Council of Japan as a top-priority 
large-scale project (Master Plan 2017)

•Selected by MEXT in Roadmap 2017 on promotion of 
large research projects

•Budget request submission being prepared
18

London, July 2016



T2HKK (Tokai 2 HK & Korea)
• Idea to build a 2nd tank in Korea
(“another” Off-Axis beam reaches 
Earth surface in Korea)
• L ~1100 km  → large matter effect
 → Mass Hierarchy sensitivity
• > 5σ for any δCP value
•Also δCP precision improves

19
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FIG. 1: Contour map of the J-PARC o↵-axis beam to Korea [8, 9].

water-based liquid scintillators raise the possibility of a program based on reactor neutrinos

at a later stage.

There were earlier e↵orts on a large water Cherenkov detector in Korea using a J-PARC-

based neutrino beam [3, 4]. Originally an idea for a two baseline experiment with a 2nd

detector in Korea has been discussed by several authors pointing out possible improvements

for measurements on CP violation and mass hierarchy [5–9]. Three international workshops

were held in Korea and Japan in 2005, 2006 and 2007 [10]. The mixing angle of ✓13 was not

known yet, and therefore the detector size and mass could not be determined at the time.

Now more realistic studies and a detector design are possible due to the precisely measured

✓13 [11–18].

Overall the T2HKK configuration with two baselines o↵ers the possibility to significantly

augment the study of neutrino oscillations relative to the single baseline T2HK configuration.

The resolution of parameter degeneracies with the measurement at two baselines also may

allow for more precise measurements of the oscillation parameters and sensitivity to non-

standard physics. In the following sections more details on the T2HKK detector, sensitivity

studies, and additional benefits are discussed followed by a summary and conclusion.
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FIG. 19: The fraction of �cp values (averaging over the true mass ordering) for which the wrong

hierarchy can be rejected with a given significance or greater.

TABLE VI: The fraction of true �cp values for which CP violation can be discovered at 3� or 5�.

True NH, Known True IH, Known True NH, Unknown True IH, Unknown

3� 5� 3� 5� 3� 5� 3� 5�

JD⇥2 0.74 0.55 0.74 0.55 0.52 0.27 0.50 0.28

JD+KD at 2.5� 0.76 0.58 0.76 0.59 0.76 0.48 0.72 0.30

JD+KD at 2.0� 0.78 0.61 0.78 0.61 0.77 0.55 0.79 0.51

JD+KD at 1.5� 0.77 0.59 0.77 0.59 0.77 0.59 0.77 0.59

for the configuration with 2 detectors in Japan is 3� better than what is presented in the

Hyper-K design report. Further studies are necessary to determine if this di↵erence arises

due to di↵erences in the systematic error model. However, it is likely that any additional

systematic errors will more strongly impact the measurement with 2 detectors in Japan since

44
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Timeline and Summary

•With x10 volume and x2 photo efficiency, Hyper-K will lead 
neutrino physics in the next generation.

•Proven technology of Water Cherenkov promises fastest physics.
•Very good chance to observe leptonic CP violation, further 
precise measurement to explore new physics.
•Rich physics programs with acc.-, atm.- astro- neutrinos and 
nucleon decay search.
•Please join!
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Project status in Japan
• ‘Hyper-K Design Report’ released

• KEK preprint 2016-21, ICRR-Report-701-2016-1

• Strong commitment from host institutes: ICRR, U. Tokyo and 
KEK (MoU for Hyper-K)

• Strong support from Japanese communities
• Cosmic-ray (CRC) and high-energy (JAHEP)

• Science Council of Japan selected Hyper-K as one of the top 
priority large-scale projects in ‘Master Plan 2017’

• MEXT (funding agency) will soon release ‘Roadmap 2017’
• Hyper-K is selected in the preliminary version of the Roadmap 

released on July 18, 2017

• Budget request being submitted, aiming to begin the 
construction in JFY 2018 & begin operation in JFY 2026
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Current status of the project
� Design Report is reviewed by Hyper-K Advisory Committee

� KEK Preprint 2016-21, ICRR-Report-701-2016-1

� Strong commitment from host institutions (ICRR, U. Tokyo & KEK)

� Strong support from Japanese communities

� Cosmic-ray (CRC) and high-energy (JAHEP) 

� Science Council of Japan has selected HK as one of top priority 
large-scale research projects in “Master Plan 2017”

� MEXT is evaluating HK, and will soon release “Roadmap 2017” 
� HK is listed in the preliminary version of the Roadmap released on July 18.

� Budget request is being submitted to start construction in JFY 2018. 
(Aiming to start observation in 2026)

JFY
2017

2018 2019 2020 2021 2022 2023 2024 2025 2026

Geo-survey, detailed design

Access
tunnel

Cavern excavation Tank construction

Water
filling

PMT/cover/electronics production Operation

Initial
facility
const.

H.-K. Tanaka, TAUP 2017


