A Si-PAD and Tungsten based electromagnetic calorimeter for the forward direct photon measurement at LHC

Yota Kawamura for the ALICE FoCal Collaboration University of Tsukuba

Outline

- Introduction
 - ALICE experiment at LHC
 - Motivation
- FoCal Project
 - FoCal-E prototype
- Our development of FoCal-E
 - Performance of Si PAD detector
 - Performance of the integrated system
 (Low granularity and High granularity detectors)
 - Summary & Outlook

ALICE Experiment

- \cdot ALICE experiment at LHC
 - Specialize in heavy ion collisions
 - Study Quark Gluon Plasma
- Quark Gluon Plasma (QGP)
 - · Quarks and gluons move freely

Crucial input to QGP study: properties of initial state of collision

Motivation

Color Glass Condensate(CGC)

FoCal project

Excellent position resolution is required to separate two clusters

FoCal-E strawman design

Si-W sampling calorimeter

W:absorber

 $1X_0 = 3.5 \text{ mm}(1 \text{layer})$ $R_M = 9.3 \text{ mm}$ Si:detection layer Two types of sensors 1. LGL(Low Granularity Layer)

Si Pad

$$1Pad = 1 \times 1 \text{ cm}^2$$

$$1layer = 64 \text{ Pads}(8 \times 8)$$

Energy measurement

2. HGL(High Granularity layer) Monolithic Active Pixel Sensors

(MAPS)

1pixel = $30 \times 30 \ \mu m^2$ digital readout High position resolution

LGL Development from 2014 to 2016

Development since 2014

LGL readout system (2014~)

Summing Board(ORNL)

4 sequential Longitudinal PADs

128ch output(2 Gains) 1/1(high gain):positive output 1/16(low gain):negative output

select gain by readout polarity

APV25(CERN RD51)

Read out chip buffer, preamp, pulse shaper 128:output Sampling frequency:40MHz 5Gains:80,90,100,110,120%

SRS(Scalable Readout System) (CERN RD51)

ADC Board:12bit ADC FEC Board:front-end Send digital data to PC

Beam test at CERN PS/SPS in 2015

Beam test result in 2015

Test beam at CERN SPS 2016

New summing board

- New Summing board installed
- \cdot For noise reduction
- Attenuate the signal before readout

Measure higher energy range

Result in 2016: linearity

- Took only data at two energies but linearity is generally good
- To match the the data in 2015 and those in 2016, need more detail gain calibration study.

Result in 2016: resolution

Resolution is worse compared to 2015's fitting data … Most likely due to **dead ch** in the center of 4th LGL. If all channels are working, **better resolution is expected.**

Result in 2016: longitudinal profile

Result in 2016: positioning

Summary & Outlook

Summary

- We have tested Si PAD-W based electromagnetic calorimeter(LGL) for 3 years.
- Good energy linearity up to 130 GeV is measured.
- Energy Resolution is ~10% at 50 GeV and 130 GeV (assumed no dead ch).
- Strong correlation between LGL & HGL is observed.
- Outlook
- Noise has to be reduced to get closer to the performance in the simulation.
- Perform calibration by measuring MIP signal and examine current dynamic range.
- Based on those results, make a new type of FoCal prototype which fulfills the requirement for the physics measurements.

Thank you very much for your attention !

Back up slides

Si wire bonding

wire bonding

Beam test @CERN PS/SPS in 2015

Summing Board

LGL 1Segment TIPP2017 at Beijing, 23rd May, 2017

HGL

Beam

Spectrum 2015 data

Data at PS in 2015

Data at SPS in 2015

Resolution 2015 and 2016

Channel dependence

Longitudinal shower profile in 2015

Longitudinal shower profile in 2015

Radius of shower spread

LGL3 130 GeV

- This is the Diagram showing spread of horizontal shower in 130 GeV LGL 3
- ADC Values projection as a function
 X or Y.

 The width of the distribution represents the magnitude of the spread of the shower

 $R_{\rm M} = 9.3 \text{ mm}$ (90% of the shower fall within this radius)

$1.65\sigma = 0.8 \pm 0.0013 \text{ cm}$

The shower radius on the LGL 3 module is within the range of the theory

Integrate System

HGL position resolution

The center of gravity of position resolution

 $\sigma_{G_y} = \frac{(3.546 \pm 0.044) \text{mm}}{\sqrt{E}} \oplus (0.000 \pm 0.021) \text{mm}$