Software compensation and particle flow

Boruo Xu, on behalf of CALICE collaboration Beijing, TIPP 2017

Content

- Background information
- Software compensation
 - Implementation with single particle data from test beam
 - Implementation in PandoraPFA for simulation
- Single hadron and jet energy resolutions improvements
 - Transverse cell size optimisation study
 - Software compensation for semi-digital HCAL

Particle Flow approach to calorimetry

High-granularity Particle Flow: reconstruct individual particles.

- ~3% jet energy resolution required for WW/ZZ separation using 4 quarks channel, achieved in simulation studies with PandoraPFA Eur.Phys.J. C75 (2015) no.9, 439
- Driving factor for high-granularity calorimeter design of future collider detectors

- Charged particle momentum measured in tracker (60% jet energy)
- Photon energies measured in ECAL: σ E/E < 20% / \sqrt{E} (30% jet energy)
- Only neutral hadron energies measured in HCAL (10% jet energy)
- Much improved resolution.

CALICE collaboration

- CALICE collaboration: 55 institutes in 19 countries, ~ 350 members
- Research and development of high-granularity calorimeters for future lepton colliders
- A rich program exploring full spectrum of imaging calorimeter technologies https://twiki.cern.ch/twiki/bin/view/CALICE/WebHome

CALICE calorimeter prototypes

- A prototype to demonstrate high-granularity analogue hadronic calorimeters (AHCAL) based on plastic scintillators with SiPM readout
- Tested with two absorbers: Steel, 21mm/layer
 Tungsten, 10mm/layer
 - Exploring more compact layout for higher energies at CLIC

- The basic element of the active layers: a 3 x 3 cm² scintillator tile, with individual SiPM readout
- The full system: The first largescale use of SiPMs, ~ 8000 in prototype, started taking data in 2006 - 38 layers

Compensation calorimeter

- Non-compensating calorimeter: response for electromagnetic (EM) showers is typically higher than hadronic shower (e/h > 1)
 - Hadronic showers contain EM sub-showers from photons, and inaccessible processes of hadronic sub-showers, i.e. nuclear target recoil, binding energy loss.
- Difference in response of EM and hadronic sub-shower degrades energy resolution.
 - The fraction of EM and hadronic sub-showers fluctuates strongly
- Compensating calorimeter: response for electromagnetic showers is identical to hadronic shower (e/h = 1) → improves energy reconstruction and hadron resolution
 - Specific detector material design, or
 - Software compensation

Compensating calorimeter: material design

- Specific detector material design for compensating calorimeter
- With Tungsten absorbers, the (analogue hadronic) calorimeter is very close to intrinsic compensation.
- Responses for EM and hadronic subshowers are similar
- No improvement from software compensation is expected
- JINST 10 (2015) no.12, P12006

Calorimeter: software compensation

- Non-compensating calorimeter: response for electromagnetic showers is typically higher than hadronic shower (e/h > 1)
- Software compensation (SC): use shower density to correct for different response to EM and purely hadronic sub-showers
 - does not use prior knowledge of the beam energy the uncorrected shower energy / cluster energy is used to select the software compensation weights for a given event.
- Non-compensation $E_{RAW} = \sum_{hits} E_{ECAL} + \sum_{hits} E_{HCAL} \times 1$
- Software compensation: $E_{SC} = \sum_{hits} E_{ECAL} + \sum_{hits} E_{HCAL} \times \omega$

Weight is a function of shower density and E_{RAW}

Software compensation: logic

- Identify high hit-density (p) as EM sub-showers, low hit-density as hadronic sub-showers
 - Implemented in PandoraPFA in simulation, but the concept is taken from the CALICE study and tested with real data

Software compensation with test beam data

- Software compensation developed and tested with test beam data
- Steel analogue calorimeter is intrinsically non-compensating (e/π⁻~1.2), but high granularity allows software compensation
- INST 7, P09017 (2012) CALICE Analysis Note CAN-056 24 GeV Resolution [%] CALICE Preliminary 22 π 80 GeV ScECAL + AHCAL + TCMT entries / 1 Uncorrected 20 6000**⊢(b)** Works for combined set-up Local SC 18 Global SC 5000 16 -Energy 4000 10 F 3000 Data (Standard) Data (SC) 2000 6 4 2 AHCAL (Standard) (JINST 7 P09017) 1000 AHCAL (SC) (JINST 7 P09017 5 10 15 20 25 30 75 85 90 80 70 Beam Momentum [GeV] reconstructed energy [GeV]

The response of individual cells is calibrated using muons Particle energy reconstructed from the sum of amplitudes of all detector hits, with appropriate MIP \rightarrow energy calibration

Software compensation with test beam data

- Software compensation improves single particle energy resolution of non-compensating calorimeter, tested with data
- Resolution (AHCAL):
- Steel: ~ 58%/√E w/o SC,
 ~ 45%/ √E with SC
- Tungsten: ~ 58%/√E
 - Tungsten comparable to steel w/o SC, due to coarser sampling of EM sub-showers in the W-AHCAL: 3 X₀ / layer rather than I X₀ with steel

23/05/2017

Software compensation: particle flow

- Developed and tested on real data, now implemented in PandoraPFA for simulation
- Software compensation improves:
 - I) Single hadron energy resolution
 - 2) Jet energy resolution
 - better energy resolution → better pattern recognition (next slide)
- Software compensation implemented in cluster energy estimation in PandoraPFA: ()
- Full use of software compensation throughout pattern recognition reconstruction in PandoraPFA: 1) and 2)

23/05/2017

Software compensation: pattern recognition

- In high density jets (high energies), limit of "pure" pattern recognition based particle flow may be reached
 - Cannot cleanly resolve neutral hadrons in hadronic showers.
- Address the problem "statistically"; recluster if significant discrepancy between cluster energy and its associated-track momentum.
 - Alter clustering parameters, or change clustering algorithm entirely, until cluster splits to achieve sensible track-cluster association
- Better hadron energy estimation → better reclustering → better reconstruction

topological trackcluster association, large discrepancy between cluster energy and its associated-track momentum.

After reclustering, cluster splits to achieve sensible track-cluster association

Software compensation: single hadron resolution

- Software compensation improves: I) Single hadron energy resolution
- Narrower energy distributions

Software compensation: jet energy resolution

Software compensation: transverse granularity

Software compensation offers best jet energy resolution, used in optimisation studies: here AHCAL square cell size

Same trend w/ and w/c software compensation 4.5 RMS₉₀(E_j)/Mean₉₀(E_j) [%] RMS₉₀(E_j)/Mean₉₀(E_j) [%] 250 GeV jets -- No energy corrections ---- Software compensation 3.5 3.5 45 GeV jets No energy corrections 3 3 Software compensation 2 6 10 8 10 4 6 8 Δ Cell side length [cm] Cell side length [cm] B. Xu - University of Cambridge 23/05/2017 16

Software compensation: semi-digital calorimeter

- Software compensation technique can be used for semi-digital calorimeter.
- Energy calculation of semi-digital calorimeter can be reformulated to be mathematically similar to software compensation in AHCAL
- Details in upcoming paper

Total energy is simple summation of three thresholds N_1, N_2, N_3

 $E_{SD} = \sum \alpha_i . N_i$

Can rewrite as

 $E_{SD} = \sum_{hits}^{bins} \alpha_i \cdot \frac{E_j}{E_j} = \sum_{hits} \omega_j \cdot E_j \text{ with } \omega_j = \frac{\alpha_i}{E_j}$ Compare with software $E_{SC} = \sum E_{ECAL} + \sum (E_{HCAL}^{i} \times \omega(\rho_{i}))$ compensation Software compensation bins (analogue calorimeter) ~ thresholds in SD calorimeter

Software compensation: Conclusion

- Significant gain in jet energy resolution over a wide jet energy range
 - Best performance seen in ILD detector simulation
- Does not significantly alter view on transverse granularity optimisation
 - Default ILD 3 x 3 cm² cell size is still a very reasonable choice
- Available in PandoraPFA v02-09-01 onwards (including)
 - Includes semi-digital reconstruction scheme
 - Installed in ILCsoft v01-17-10 onwards (including)
- A paper to be submitted to EPJC imminently

Software compensation in Particle Flow reconstruction

Huong Lan Tran*, Katja Krüger, Felix Sefkow

Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany

Steven Green, John Marshall, Mark Thomson

Cavendish Laboratory, Cambridge, United Kingdom

Frank Simon

Max-Planck-Institut für Physik, Munich, Germany

Backup

Software compensation: weight

Software compensation for high energy jets

23

Earlier work on SC in PandoraPFA

• HCAL cell truncation is a rudimentary software compensation, aided with two other energy corrections algorithms: CleanClusters and **ScaleHotHadrons**

PandoraPFA Track-cluster association

Clear Associations using cluster mip-segments:

 Local straight-line fits are performed to hits identified as mip-like and backwards/forward projections are used to identify associations. Tight matching criteria are applied.

https://github.com/PandoraP FA/Documentation/blob/mas ter/Pandora_LC_Reconstruc tion.pdf

 Less clear associations:
 e.g. Small fragments removed, based on proximity to charged hadron clusters
 7 GeV cluster
 6 GeV cluster
 4 GeV track

PandoraPFA reclustering

- At some point, in high density jets (high energies), reach limit of "pure" particle flow.
- Cannot cleanly resolve neutral hadrons in hadronic showers.
- Use information from track-cluster associations to identify pattern-recognition problems:

https://github.com/PandoraP FA/Documentation/blob/mas ter/Pandora_LC_Reconstruc tion.pdf

- Address the problem "statistically"; if we identify significant discrepancy between energy of a cluster and momentum of its associated track, choose to recluster.
- Alter clustering parameters, or change clustering algorithm entirely, until cluster splits in such a way that we obtain sensible track-cluster associations.

Software version and configuration

Detector model: ILD_ol_v06

® Reconstruction software: ilcsoft_v01-17-07 combined with PandoraPFA version v02-09-01:

PandoraSDK v02-03-01

OLCContent v02-04-01 including software compensation in LCPlugins and hits information registration for software compensation weight training in LCUtility

PandoraMonitoring v02-03-00

Digitiser: ILDCaloDigi with realistic options for ECAL and HCAL

Calibration constants optimised using PandoraAnalysis toolkit

Timing cut: 100 ns

