Observation of a neutral structure near the $D\overline{D}^*$ mass threshold in $e^+e^- \rightarrow (D\overline{D}^*)^0 \pi^0$ at $\sqrt{s} \neq 4.226$ and 4.257 GeV

2016.11.11

- After the discoveries of the charged Z_c^{\pm} states, BESIII reported studies of their neutral partners in the isospin symmetric channel of $e^+e^- \rightarrow Z_c^0 \pi^0$, such as $Z_c(3900)^0$, $Z_c(4020)^0$ and $Z_c(4025)^0$.
- These measurements indicate that the $Z_c(3900)$, $Z_c(4020)$ and $Z_c(4025)$ are three different isospin triplet states.
- This motivates a search for the neutral partner of the $Z_c(3885)^{\pm}$ to identify its isospin.
- (PS: this is a strong interaction process of Z_c(3885)[±] → (DD̄^{*})[±], strong interaction don't violate isospin symmetry .)

- Choose the process $e^+e^- \rightarrow (D\overline{D}^*)^0\pi^0 + c.c.$ to study if there is a neutral charmoniumlike structure $Z_c(3885)^0$, where $(D\overline{D^*})^0$ refers to D^+D^{*-} or $D^0\overline{D}^{*0}$.(PS c.c. represents the coupled channel)
- For the process $e^+e^- \to D^0\overline{D}^{*0}\pi^0$, $\overline{D}^{*0} \to \overline{D}^0\pi^0$, we just need to reconstruct the D^0 , \overline{D}^0 and the primary π^0 .

The selection criteria

- A vertex fit of each D candidate and a mass-constrained kinematic fit to the nominal D mass are performed
- The primary π^0 candidates are reconstructed with pairs of photons, and their invariant mass $M(\gamma\gamma)$ must be in the range (0.120,0.15)GeV/ c^2

Background analysis

- For e⁺e⁻ → D⁰D̄^{*0}π⁰ with D̄^{*0} → D̄⁰π⁰, the process e⁺e⁻ → D⁰D̄^{*0}π⁰ with D̄^{*0} → D̄⁰γ is a major background. To reject this background, the way is
 The e⁺e⁻ → (DD̄^{*})⁰π⁰ three body PHSP and inclusive MC background
- Some background events from high energy process, such as $e^+e^- \rightarrow D^{(*)}\overline{D}^{**} \rightarrow D^0 \overline{D}^{*0} \pi^0$

Result

FIG. 1 (color online). Distributions of $\text{RM}(D\pi^0)$ at $\sqrt{s} = 4.257$ GeV. The signal and PHSP processes are overlaid with an arbitrary scale. The solid arrows indicate the selection criteria for the $(D\bar{D}^*)^0\pi^0$ candidates. Data at $\sqrt{s} = 4.226$ GeV show similar distributions and are omitted.

FIG. 2 (color online). (Upper) Projections of the simultaneous fit to the $M(D\bar{D}^*)$ spectra for $e^+e^- \rightarrow D^+D^{*-}\pi^0$ and $D^0\bar{D}^{*0}\pi^0$ at $\sqrt{s} = 4.226$ and 4.257 GeV. (Lower) Sum of the simultaneous fit to the $M(D\bar{D}^*)$ spectra for different decay modes at the different energy points above.

- An unbinned maximum likelihood fit is performed on the $M(D\overline{D}^*)$ spectra for $e^+e^- \rightarrow (D\overline{D}^*)^0\pi^0$. Three components are included in the fits: the $Z_c(3885)^0$ signal, the PHSP processes, and MC simulated backgrounds.
- The shape of PHSP process is derived from MC simulations. The signal shape is described as a mass-dependent-efficiency weighted Breit-Wigner function. The inclusive MC background distributions are modeled based on the kernel estimation.
 x²/d.o.f = 18.5/19
 - The statistical significance of the $Z_c(3885)^0$ signal is estimated to be more than 12σ .

Systematic uncertainties

TABLE I. Summary of systematic uncertainties for the resonance parameters, the Born cross sections, and the ratio of decay rates. Values outside the parenthesis represents uncertainties for $\sigma_{D\bar{D}^*}$ at $\sqrt{s} = 4.226$ GeV, while those inside are for $\sigma_{D\bar{D}^*}$ at $\sqrt{s} = 4.257$ GeV. The total systematic uncertainties are obtained by combining all the independent sources in quadrature.

Source	$m_{\rm pole}({\rm MeV}/c^2)$	$\Gamma_{\text{pole}}(\text{MeV})$	$\sigma_{Dar{D}^*}(\%)$	$\mathcal{R}(\%)$
Beam energy	1.0	3.0	4 (5)	1
Signal shape	3.5	8.2	5 (4)	2
Background	6.8	6.6	15 (15)	4
Fit range	0.3	0.3	3 (1)	1
Mass shift	3.0			
Resolution		9.5	11 (4)	1
Efficiency			11 (11)	11
Input-output check	1.6	2.5		
$(1+\delta^{\rm rad})(1+\delta^{\rm vac})$			5 (5)	
\mathcal{B}_{int}			5 (5)	5
\mathcal{L}^{m}			1 (1)	
Total	8.4	15	23 (21)	13

- $\bullet e^+e^- \to Z_c^0\pi^0 \to (\mathrm{D}\overline{D}^*)^0\pi^0$
- π^0 has $J^P = 0^-$, e^+e^- has $J^P = 1^-$, if assuming that Z_c^0 has $J^P = 1^+$
- Since orbital parity $P = (-1)^l$, to ensure parity conservation, orbital angular momentum L must be 0,2,4....
- So using S-wave to simulate the process $e^+e^- \rightarrow Z_c^0 \pi^0 \rightarrow (D\overline{D}^*)^0 \pi^0$ is reliable