The Pierre Auger Observatory Status - First Results - Plans

Andreas Haungs for the Pierre Auger Collaboration Forschungszentrum Karlsruhe Germany haungs@ik.fzk.de

Karlsruhe Institute of Technology

LHAASO workshop, China, April 09

Program Astroparticle Physics of Helmholtz Society, Germany

p 10²⁰ eV

J.Blümer 2009

p 10¹⁵⁻¹⁸ eV

TITLE .

Pierre Auger Observatory: Science Objectives

- understand the nature, origin and propagation of UHECR
 - point sources?
 - An-/Isotropy of arrival directions?
 - GZK cut-off or continuing spectrum or other structures?
 - primary particle mass, type?
 - acceleration or decay of exotics?
- measure cosmic rays with high statistics and quality
 - aperture > 7 000 km²sr @10¹⁹eV in each hemisphere
 - ~ degree angular resolution, zenith angle θ° ... 90°
 - primary particle discrimination (light, heavy, γ , ν)
 - calorimetric energy calibration
- hybrid design: surface detectors and fluorescence telescopes
 - measurement of direction, energy and composition of primaries

Southern Observatory

1600 detectors 3,000 km²

The Pierre Auger Project

High statistics Hybrid detection Full sky coverage

> 1992 Paris workshop 1996 Design report 1999 Ground breaking 2001 Engineering array 2003 Construction phase 2008 Completion

> > 4

LHAASO workshop, China, April 09

Southern Pierre Auger Observatory completed July 2008

LHAASO workshop, China, April 09

Andreas Haungs – Pierre Auger Observatory

Surface array in the Argentinean Pampa

2-10

Cables, while the shot offer the country \$1.4. In L4 (14)

Andreas Haungs – Pierre Auger Observatory

TRUEAU AND SHE

Water Cherenkov Detector

LHAASO workshop, China, April 09

Fluorescence Telescopes

six telescopes each viewing 30° by 30°

One of 24 fluorescence telescopes

PMT camera with 440 pixels, 1.5° FoV per pixel, 10 MHz

UV transmitting filter, corrector lens, safety curtain

3.4 m segmented mirror (aluminum alloy, glass)

Surface detector events

Tank signal in units of the signal of a vertical muon More than 650,000 events (T5 trigger, used in analysis)

Golden hybrid events

LHAASO workshop, China, April 09

Andreas Haungs – Pierre Auger Observatory

Other types of Auger events

LHAASO workshop, China, April 09

Andreas Haungs – Pierre Auger Observatory

13

NALL

Other types of Auger events

Golden hybrid events: many cross checks possible

15

LHAASO workshop, China, April 09

Energy calibration of surface detector by Hybrid events

LHAASO workshop, China, April 09

Andreas Haungs – Pierre Auger Observatory

Energy spectrum

Phys. Rev. Lett. 101 (2008) 061101

LHAASO workshop, China, April 09

Energy spectrum: Other methods

Transition from galactic to extragalactic cosmic ray sources?

Greisen-Zatsepin-Kuzmin (GZK) cutoff?

Comparison with GZK suppression models

- ? Observed flux suppression is due entirely to GZK effect
- ? Observed flux suppression is signature of maximum acceleration energy
- ? Observed flux suppression is due to both source cutoff and GZK effect

LHAASO workshop, China, April 09

Andreas Haungs – Pierre Auger Observatory

Composition: measurement of longitudinal profile

(Note: not consistent with muon data and current interaction models)

Photon limit: using surface detector data

Limit on fraction of photons in UHECR flux

Astropart. Phys. 29 (2008) 243 Astropart. Phys. (2009) in press, arxiv 0903-1127

Many exotic source scenarios excluded

LHAASO workshop, China, April 09

air showers from skimming ν_τ neutrinos

Flux limits for neutrinos

Arrival directions: Galactic center point source search

Significance plots

No confirmation of previous indications for excess from GC region

Astropart. Phys. 27 (2007) 244

Dark red: *more events than expected* Light red: *fewer events than expected*

AGASA: would have 16 σ SUGAR: would have 30 σ in Auger

LHAASO workshop, China, April 09

Anisotropy of ultra-high energy cosmic rays

Possible correlation with nearby AGNs ?

- 12th Veron-Cetty & Veron catalogue of AGN
- Data set: Jan1st, 2004 to May 27th, 2006, well-contained events
- Scan over angular distance, maximum redshift, energy threshold

Minimum: 12 out of 15 correlated with nearby AGNs (3.2 expected) $\Delta \alpha = 3.1^{\circ}, E_{min} = 5.6 \times 10^{19} \text{ eV}, z_{max} = 0.018 \text{ (75 Mpc)}$

Uncorrected chance probability: $P \sim 2 \times 10^{-6}$

Science 318 (2007) 939 Astropart. Phys. 29 (2008) 188

Anisotropy of ultra-high energy cosmic rays

LHAASO workshop, China, April 09

Andreas Haungs – Pierre Auger Observatory

Arrival direction distribution is anisotropic

Could it be that AGNs are indeed the sources?

Assumption: all AGNs of the VC catalogue have same injection power

Expectation: ~6 events from Virgo cluster, none observed (excluded at 99% level for complete distribution)

(Gorbunov et al., arXiv:0711.4060 [astro-ph])

Possible interpretations:

•AGNs have different injection power (predicted by Biermann, Falcke et al.)

•Sub-class of AGNs are sources

•AGNs are not sources, sources are distributed similar to AGNs

Astropart. Phys. 29 (2008) 188

Note:

•....

•AGNs are standard Seyfert galaxies (not very powerful)

- •Anisotropy of distribution independent of source catalogue
- •Correlation with supergalactic plane
- •HiRes stereo data

(Stanev., arXiv:0805.1746 [astro-ph])

Auger Enhancements: investigating the ankle

residual (Φ(E)-E^{-2.6})/E^{-2.6} Ankle 1.5 **Deviation** from E^{-2.6} flux 0.5 0 -0.5 primary mass (QGSJETII) 10 Mean mass number 10¹⁸ 10¹⁹ 10²⁰ E [eV]

Infill array of water Cherenkov detectors

LHAASO workshop, China, April 09

AMIGA: Auger Muons and Infill for the Ground Array

HEAT: High Elevation Auger Telescopes

- 3 ``standard´´ Auger telescopes tilted to cover 30 60° elevation
- Custom-made metal enclosures
- Also prototype study for northern Auger Observatory

HEAT: High Elevation Auger Telescopes

LHAASO workshop, China, April 09

Andreas Haungs – Pierre Auger Observatory

AERA: Auger Engineering Radio Array

Aims:

- Establish radio detection technique
- Establish test self-trigger concepts for E > 5x10¹⁷ eV
- Calibrate radio signal
- Investigation of transition from galactic to extragalactic CR

Plan:

- Array of 20 km²
- 30 80 MHz, 200 Ms/s
- 20 prototype antennas by end 2009
- 150 antennas by end of 2011

AERA: Auger Engineering Radio Array

First prototype of DAQ system

LHAASO workshop, China, April 09

Go for highest energies

Northern Auger Observatory: Motivation and aims

- The sources of UHECR
 - Anisotropy *⇒* correlations *⇒* source classes
 - Study individual sources with spectra and composition on the whole sky
- The acceleration mechanism
 - Composition evolves from source to here Proton beam !? calibration !

 - E>>10²⁰ eV still difficult; E_{max} ?
- **Propagation and cosmic structure**

 - Map galactic B-field Matter within 100 Mpc Extragalactic B-field small ?
- Particle physics at 350 TeV
 - Mass and X_{max}
 - Had. interactions, cross sections ?
 - New physics, Lorentz invariance
- Multi-messenger astrophysics Combine the data from photons, neutrinos and charged particles ! Sources within field of view of IceCube

LHAASO workshop, China, April 09

Andreas Haungs – Pierre Auger Observatory

Particle physics with air showers

(a) Correlation with sources allow identification of particles(b) Propagation leads to either light or heavy composition

Allard et al., arXiv:0805.4779 [astro-ph]

Auger-North detector layout

- Optimized for science and costs
- Surface array with 4000 stations: 20,000 km² with $\sqrt{2}$ -mile = 2.3 km grid
- Infill array with 400 stations:
 2,000 km² with 1-mile = 1.6 km grid
- 39 fluorescence telescopes

Current status and timeline

Auger-South: \$55M Auger-North: \$120M

LHAASO workshop, China, April 09

-		-	
Argentina	Australia	Bolivia	Brasil
Czech Republic	France	Germany	Italy
		Data	
Mexico	Netherlands	Poland	Slovenia
Spain	United Kingdom	USA	Vietnam
	enited Hingdein		
Portugal	Croatia		

special thanks to Ralph Engel, Matthias Kleifges

LHAASO workshop, China, April 09

Andreas Haungs – Pierre Auger Observatory

5

SKIT