More on the Model Independent Measurement of BR(h \rightarrow BSM) & the Systematic Error from \triangle BR(h \rightarrow BSM) on SM σ xBR Measurements

Tim Barklow (SLAC)
Oct 27, 2016

Perform searches for *N* different $h \rightarrow BSM$ decay channels.

A search for one of these channels might involve more than one decay topology for example, if the decay channel is $h \to \phi_1 \ \varphi_2$, where $\phi_1 \ \& \ \varphi_2$ are neutral scalars, then there could be several decay topologies depending on how $\phi_1 \ \& \ \varphi_2$ decay.

To cover all possible decay channels involving new undiscovered particles it is probably sufficient to consider neutral particles only since charged particles would have been discovered in the LEP2, LEP e^+e^- colliders, and at lower energy e^+e^- colliders.

Higher mass resonances would induce Effective Field Theory (EFT) four point vertices such as $h\gamma f\overline{f} h\gamma W^+W^{-*} hZf\overline{f}$ and so on. An EFT analysis could help limit the possibilites

```
The 95% CL limit on BR(h \rightarrow BSM) would be given by max {95% CL limit for BR(h \rightarrow BSM decay channel i)}
```

Systematic Error on $\sigma \cdot BR_i$ from ΔBR_{BSM} (no specific $h \rightarrow BSM$ analyses)

Neglecting non-Higgs background, the number of events N_i passing Higgs decay channel i selection criteria is

$$N_i = \sum_i \sigma \cdot BR_j \, \varepsilon_{ij} \, L$$

 ε_{ij} = efficiency for Higgs decay mode j to pass Higgs decay channel i selection For SM decays the efficiencies ε_{ij} can be calculated with MC. But what if decay mode j is a BSM decay? To account for this possibility a conservative systematic error can be assigned assuming $\varepsilon_{ij} = 1$. This leads to a systematic error of $\Delta N_i = L\sigma \Delta BR_{BSM}$

3

Systematic Error on $\sigma \cdot BR_i$ from ΔBR_{BSM} (with N specific $h \rightarrow BSM$ analyses)

Neglecting non-Higgs background, the number of events N_i passing Higgs decay channel i selection criteria is

$$N_i = \sum_i \sigma \cdot BR_j \, \boldsymbol{\varepsilon}_{ij} \, \boldsymbol{L}$$

 ε_{ij} = efficiency for Higgs decay mode j to pass Higgs decay channel i selection. For SM decays the efficiencies ε_{ij} can be calculated with MC. If we have analyzed N different $h \to BSM$ decay channels then these channels can be included in the analysis of the SM decay channels. This should help improve the limits on the $h \to BSM$ decay channels, and systematic errors from possible BSM decays — having been included in this manner in the SM analysis — don't have to be included in the systematic error budget.