Non-extensive Statistical Mechanics

Keming Shen

Institute of Particle Physics

Central China Normal University

Wuhan, China

December 7, 2016

(1) Preface
(2) Non-extensive Statistics

- Tsallis Entropy
- Tsallis q
- Tsallis PDF
(3) Non-extensive quantum statistics
- PDF
- applications
(4) others
- Relativistic Non-extensive Thermodynamics[3]
- Non-extensive Hydrodynamics
- QGP
(5) κ-statistics
(6) Backup

Outline

(1) Preface

2) Non-extensive Statistics

- Tsallis Entropy
- Tsallis q
- Tsallis PDF
(3) Non-extensive quantum statistics
- PDF
- applications

4. others

- Relativistic Non-extensive Thermodynamics[3]
- Non-extensive Hydrodynamics
- QGP

5. k-statistics
(6) Backup

A summary on Entropy Statistics

With the purpose to study as a whole the major part of entropy measures, the entropy-functional is proposed in[1]

$$
\begin{equation*}
H_{h, v}^{\varphi_{1}, \varphi_{2}}\left(p_{i}\right)=h\left(\frac{\sum_{i}^{W} v_{i} \varphi_{1}\left(p_{i}\right)}{\sum_{i}^{W} v_{i} \varphi_{2}\left(p_{i}\right)}\right) \tag{1}
\end{equation*}
$$

list some	Measure	$h(x)$	$\varphi_{1}(x)$	$\varphi_{2}(x) v_{i}$	
	1	x	$-x \log x$	x	v
of them:	2	$(1-r)^{-1} \log x$	x^{r}	x	v
	3	${ }^{x}$	$-x^{r} \log x$	x^{r}	v
(1)	4	$(s-r)^{-1} \log x$	x^{r}	x^{s}	v
Shannon-	5	(1/s) $\arctan x$	$x^{r} \sin (s \log x)$	$x^{r} \cos (s \log x)$	v
Shannon-	6	$(m-r)^{-1} \log x$	x^{r-m+1}	x	v
1948 [2],	7	$(m(m-r))^{-1} \log x$	$x^{r / m}$	x	v
	8	$(1-t)^{-1} \log x$	x^{t+s-1}	x^{s}	v
(2) Renyi-	9	$(1-s)^{-1}(x-1)$	x^{s}	x	v
	10	${ }^{(t-1)^{-1}\left(x^{t}-1\right)}$	$x^{1 / t}$	x	v
1961 [3],	11	$(1-s)^{-1}\left(e^{x}-1\right)$	$(s-1) x \log x$	x	v
and	12	$(1-s)^{-1}\left(x^{\frac{s-1}{r-1}}-1\right)$	x^{r}	x	v
	13	x	$-x^{r} \log x$	x	v
etc[4, 5, 6,	14	$(s-r)^{-1} x$	$x^{r}-x^{s}$	x	v
$1,2,3,4,5$	15	${ }^{(\sin s)^{-1} x}$	$-x^{r} \sin (s \log x)$	x	v
$3,6,1,2,31$	16	$\left(1+\frac{1}{\lambda}\right) \log (1+\lambda)-\frac{x}{\lambda}$	$(1+\lambda x) \log (1+\lambda x)$	x	v
3, $6,1,2,3]$.	17	x	$-x \log \left(\frac{\sin (s x)}{2 \sin (s / 2)}\right)$	x	v
	18	x	$\frac{\sin (x s)}{2 \sin (s / 2)} \log \left(\frac{\sin (s x)}{2 \sin (s / 2)}\right)$	x	v
	19	x	$-x \log x$	x	w_{i}
	20	x	$-\log x$	1	v_{i}
	21	$(1-r)^{-1} \log x$	x^{r-1}	1	v_{i}
	22	$(1-s)^{-1}\left(e^{x}-1\right)$	$(s-1) \log x$	1	v_{i}
	23	$(1-s)^{-1}\left(x^{\frac{r-1}{s-1}}-1\right)$	x^{r-1}	1	v_{i}

Shannon's Entropy

First of all, it is well known of the Shannon entropy, which satisfies the Fadeev's postulates[4],

$$
\begin{equation*}
S_{S h}=\frac{\sum_{i}^{W}\left(-p_{i} \ln p_{i}\right)}{\sum_{i}^{W} p_{i}}=-\sum_{i}^{W} p_{i} \ln p_{i} \tag{2}
\end{equation*}
$$

whose maximum is nothing but the case that $p_{i}=1 / W$, namely the Boltzmann Entropy,

$$
\begin{equation*}
S_{B G}=-\sum_{i}^{W} \frac{1}{W} \ln \frac{1}{W}=\ln W \tag{3}
\end{equation*}
$$

Renyi's Entropy

While, Shannon's Entropy is not the only one satisfying the postulates if we weaken the fourth one to $H[\mathcal{O}+\mathcal{Q}]=H[\mathcal{O}]+H[\mathcal{Q}]$.[3] In 1961, Alfred Renyi gave another one

$$
\begin{equation*}
S_{R e}=\frac{1}{1-q} \ln \sum_{i}^{W} p_{i}^{q} \tag{4}
\end{equation*}
$$

which is also shown in the table.
P.S. Think of this: what will it be when $\sum_{i}^{W} p_{i}^{q}$ goes to 1 with $q \rightarrow 1$?

Outline

(1) Preface
(2) Non-extensive Statistics

- Tsallis Entropy
- Tsallis q
- Tsallis PDF
(3) Non-extensive quantum statistics
- PDF
- applications
(4) others
- Relativistic Non-extensive Thermodynamics[3]
- Non-extensive Hydrodynamics
- QGP
(5) κ-statistics

6. Backup

Tsallis' Entropy

Since Tsallis suggested to use the non-extensive entropy formula with the use of a quantity normally scaled in multifractals firstly,[5]

$$
\begin{equation*}
S_{T s}=\frac{\sum_{i=1}^{W} p_{i}^{q}-1}{1-q} \tag{5}
\end{equation*}
$$

the corresponding generalized statistical mechanics have been substantially developed and spread over many fields of application[6, 1, 2, 3, 4, 5].
P.S. It also has the property that its maximum is $S_{T s}^{\max }=\ln _{q} W$ with $p_{i}=1 / W$.

Uniqueness Theorem for Shannon Entropy

(1) Shannon [2]

$$
\begin{cases}S(A+B)=S(A)+S(B) & p_{i j}^{A+B}=p_{i}^{A} p_{j}^{B} \\ S\left(\left\{p_{i}\right\}\right)=S\left(p_{L}, p_{M}\right)+p_{L} S\left(\left\{p_{i} / p_{L}\right\}\right)+p_{M} S\left(\left\{p_{i} / p_{M}\right\}\right) & L+M=W\end{cases}
$$

(2) Khinchin [4]

$$
\left\{\begin{array}{l}
S\left(\left\{p_{i}\right\}, 0\right)=S\left(\left\{p_{i}\right\}\right) \tag{7}\\
S(A+B)=S(A)+S(B \mid A) \quad S(B \mid A)=\sum p_{i}^{A} S\left(\left\{p_{i j}^{A+B} / p_{i}^{A}\right\}\right)
\end{array}\right.
$$

Uniqueness Theorem for Tsalli Entropy

(1) Santos [5]

$$
\begin{cases}S(A+B)=S(A)+S(B)+(1-q) S(A) S(B) & p_{i j}^{A+B}=p_{i}^{A} p_{j}^{B} \tag{8}\\ S\left(\left\{p_{i}\right\}\right)=S\left(p_{L}, p_{M}\right)+p_{L}^{q} S\left(\left\{p_{i} / p_{L}\right\}\right)+p_{M}^{q} S\left(\left\{p_{i} / p_{M}\right\}\right) & L+M=W\end{cases}
$$

(2) Abe [6]

$$
\left\{\begin{array}{l}
S\left(\left\{p_{i}\right\}, 0\right)=S\left(\left\{p_{i}\right\}\right) \\
S(A+B)=S(A)+S(B \mid A)+(1-q) S(A) S(B \mid A) \quad S(B \mid A)=\frac{\sum\left(p_{i}^{A}\right)^{a S S}\left\{\left(p_{i t}^{A}\right.\right.}{\sum\left(p_{i}^{i}\right)^{A}}
\end{array}\right.
$$

Thermodynamical Foundations/Applications

(1) Correlated Anomalous Diffusion: generalized Fokker-Planck Equation.
(2) Central Limit Theorems. [4]
(3) Zeroth Law. [5]
(4) Equipartition and Virial theorems. [6]
(5) Second Law. [1]
(6) Quantum H-theorem. [6]
(7) The classical N-body problem. [2]
(8) Fluctuation-Dissipation Theorem. [3]
(9) \ldots

q-Relation

Considering the thermal equilibrium of two systems, one with energy E_{1} (subsystem) and the other with $E-E_{1}$ (reservoir), for a maximal entropy state,

$$
\begin{equation*}
L(S(E))=L\left(S\left(E_{1}\right)\right)+L\left(S\left(E-E_{1}\right)\right)=\max \tag{10}
\end{equation*}
$$

where $L(S)$ is the additive form of the entropy.[6]
Under the Universal Thermal Independence (UTI) Principle, we have

$$
\begin{equation*}
\frac{L^{\prime \prime}(S)}{L^{\prime}(S)}=-\frac{S^{\prime \prime}(E)}{S^{\prime}(E)^{2}}=\frac{1}{C} \tag{11}
\end{equation*}
$$

Then we have, $L(S)=C\left(e^{S / C}-1\right)$, with finite constant heat capacity C.

q-Relation

Substituting the Renyi Entropy into it,

$$
\begin{equation*}
L(S)=C\left(e^{\frac{1}{C} \frac{1}{1-q} \ln \sum_{i}^{W} p_{i}^{q}}-1\right)=\frac{\sum_{i}^{W} p_{i}^{q}-1}{1-q} \tag{12}
\end{equation*}
$$

where we have $q=1-1 / C$.
More deeply, to solve the negative heat capacity problem, we get the more generalized result

$$
\begin{equation*}
q=1-\frac{1}{C}+\frac{\Delta T^{2}}{T^{2}} \tag{13}
\end{equation*}
$$

more details can be seen in [1] and its followings.

Canonical Ensemble

Under the Optimal Lagrange Multipliers(OLM)-Tsallis technique, with the normalized $\left(\sum_{i}^{W} p_{i}=1\right)$ and energy constraints $\left(U_{q}=\sum_{i}^{W} P_{i} \epsilon_{i}=\sum_{i}^{W} \frac{p_{i}^{q}}{\sum_{j}^{W} p_{j}^{q}} \epsilon_{i}\right)$ respectively,

$$
\begin{equation*}
p_{i}=\frac{1}{Z_{q}}\left[1-(1-q) \frac{\beta}{\sum_{j}^{W} p_{j}^{q}} \epsilon_{i}\right]^{\frac{1}{1-q}}:=\frac{1}{Z_{q}} e_{q}^{-\beta^{\prime} \epsilon_{i}} \tag{14}
\end{equation*}
$$

More discussions are given out in paper[3] and book[4].

q-Thermodynamics

Re-writing the q-expectation of energy, U_{q},

$$
\begin{align*}
U_{q} & =\sum_{i}^{W} \frac{p_{i}^{q}}{\sum_{j}^{W} p_{j}^{q}} \epsilon_{i}=\sum_{i}^{W} \frac{1}{\sum_{j}^{W} p_{j}^{q}} \frac{1}{Z_{q}^{q}}\left(e_{q}^{-\beta^{\prime} \epsilon_{i}}\right)^{q} \epsilon_{i} \\
& =-\frac{\partial}{\partial \beta} \ln _{q} Z_{q} \tag{15}
\end{align*}
$$

Similarly, the generalized force is

$$
\begin{equation*}
Y_{q}=-\frac{1}{\beta} \frac{\partial}{\partial y} \ln _{q} Z_{q} \tag{16}
\end{equation*}
$$

where y is the generalized coordinates.

q-Thermodynamics

All the above lead to

$$
\begin{align*}
\beta\left(d U_{q}-Y_{q} d y\right) & =\beta d\left(-\frac{\partial}{\partial \beta} \ln _{q} Z_{q}\right)-\beta\left(-\frac{1}{\beta} \frac{\partial}{\partial y} \ln _{q} Z_{q}\right) d y \\
& =d\left(\ln _{q} Z_{q}-\beta \frac{\partial}{\partial \beta} \ln _{q} Z_{q}\right) \tag{17}
\end{align*}
$$

Comparing with the q-thermodynamical relation

$$
\begin{equation*}
d S_{q}=\frac{1}{T}\left(d U_{q}-Y_{q} d y\right) \tag{18}
\end{equation*}
$$

which tells us nothing but

$$
\begin{gather*}
S_{q}=\ln _{q} Z_{q}-\beta \frac{\partial}{\partial \beta} \ln _{q} Z_{q} \tag{19}\\
\beta=\frac{1}{T} \tag{20}
\end{gather*}
$$

Grand Canonical Ensemble

Consider a non-interacting quantum gas composed of N particles in heat and particle baths. With $\sum p_{R}=1, \sum p_{R}^{q} E_{R}=\bar{E}$ and $\sum p_{R}^{q} N_{R}=\bar{N}$,

$$
\begin{equation*}
p_{R}=\frac{1}{Z_{q}} e_{q}^{-\beta\left(E_{R}-\mu N_{R}\right)} \tag{21}
\end{equation*}
$$

The factorization approximation (FA) was proposed by Buyukkilic et al. in 1995[5]. Then the generalized distribution functions are

$$
\begin{equation*}
\bar{n}_{k}=\frac{1}{e_{2-q}^{\beta\left(\epsilon_{k}-\mu\right)} \pm 1} \tag{22}
\end{equation*}
$$

where $\bar{n}_{k}=\sum p_{n_{k}} n_{k}$ and $N_{R}=\sum n_{k}$.

q-FDD and BED and Non-extensive quantum H-Theorem

Let us start by presenting the specific functional form for entropy[6]

$$
\begin{equation*}
S_{Q}=-\sum n_{k}^{q} \ln _{q} n_{k} \mp\left(1 \pm n_{k}\right)^{q} \ln _{q}\left(1 \pm n_{k}\right) \tag{23}
\end{equation*}
$$

With $C_{q}\left(n_{k}\right)=\frac{d n_{k}}{d t}$ denotes the quantum q-collisional term, it is proved that

$$
\begin{equation*}
\frac{d S_{Q}}{d t} \geq 0 \tag{24}
\end{equation*}
$$

which is the quantum H_{q}-theorem.
Furthermore, considering the equilibrium case, namely, $d S_{Q} / d t=0$,

$$
\begin{equation*}
n_{k}=\frac{1}{e_{q}^{\alpha+\beta \epsilon_{k}} \pm 1} \tag{25}
\end{equation*}
$$

Escort Distributions

Meantime, C. Beck generalized Hagedorn's theory[1, 2] to
re-consider the grand partition function in non-extensive statistics. [3]

$$
\begin{equation*}
P_{i_{1}, i_{2}, \cdots, i_{N}}=\frac{1}{Z} \prod_{j=1}^{N}\left[1-(1-q) \beta \varepsilon_{i_{j}}\right]^{q /(1-q)}=\frac{1}{Z} \prod_{j=1}^{N}\left(e_{q}^{-\beta \varepsilon_{j}}\right)^{q} \tag{26}
\end{equation*}
$$

where $1-(1-q) \beta H=\prod_{j=1}^{N}\left(1-(1-q) \beta \varepsilon_{i_{j}}\right)$. So we have

$$
\begin{equation*}
H=\sum_{j} \varepsilon_{i j}+(q-1) \beta \sum_{j, k} \varepsilon_{i j} \varepsilon_{i_{k}}+\cdots \tag{27}
\end{equation*}
$$

Thus the non-extensive average number turns to be

$$
\begin{equation*}
\bar{n}_{i}=\frac{1}{\left(e_{2-q}^{\beta \varepsilon_{i j}}\right)^{q} \pm 1} \tag{28}
\end{equation*}
$$

Outline

1 Preface

2. Non-extensive Statistics

- Tsallis Entropy
- Tsallis q
- Tsallis PDF
(3) Non-extensive quantum statistics
- PDF
- applications

4. others

- Relativistic Non-extensive Thermodynamics[3]
- Non-extensive Hydrodynamics
- QGP

5) κ-statistics
6) Backup

the $(1-q)$ expansion

We've known that the non-extensive statistics recovers the classical Boltzmann case when $q \rightarrow 1$. Moreover, in most cases there are no need to calculate the exact values or forms based on q-BED (q-FDD). Here I list some of the approximation methods[1]:
(1) Factorization Approximation. (FA)[4]

$$
\begin{equation*}
\frac{1}{e_{2-q}^{x}-1} \approx \frac{1}{e^{x}-1}\left(1-\frac{1-q}{2} \frac{x^{2} e^{x}}{e^{x}-1}\right) \tag{29}
\end{equation*}
$$

(2) Asymptotic Approximation. (AA)[5]

$$
\begin{align*}
\langle n\rangle_{q} & \approx \frac{1}{e^{x}-1}\left(1-e^{-x}\right)^{q-1}\left[1+(1-q) x\left(\frac{e^{x}+1}{e^{x}-1}-\frac{x}{2} \frac{1+3 e^{-x}}{\left(1-e^{-x}\right)^{2}}\right)\right] \\
& \approx \frac{1}{e^{x}-1}\left[1+(1-q) x\left(\frac{e^{x}+1}{e^{x}-1}-\frac{x}{2} \frac{1+3 e^{-x}}{\left(1-e^{-x}\right)^{2}}-\ln \left(1-e^{-x}\right)\right)\right] \tag{30}
\end{align*}
$$

(3) see below.

the $(1-q)$ expansion

(1) Exact Approximation. (EA)[6, 2]

$$
\begin{equation*}
\frac{1}{e_{2-q}^{x}-1}=\frac{\Gamma\left(\frac{1}{1-q}\right)}{\int d v v^{\frac{1}{1-q}-1} e^{-v}\left(e^{v(1-q) x}-1\right)} \tag{31}
\end{equation*}
$$

where $\Gamma(a)=\int d t t^{a-1} e^{-t}$ for any $a>0$.

Blackbody Radiation

A unified description of the thermostatistic properties
of a class of Bose systems
Cockiv Ont. Tincou Cluenter

Nonextensive black-body distribution function and Einstein's coefficients A and B
xmiram

Blackbody radiation in a nonextensive scenario
S. Martinex ${ }^{1.24}$, F. Pennimi ${ }^{1.24}$, A. Plastino ${ }^{127}$, and C. Tossosece ${ }^{15}$

tsoo La Plata, Aryextims
${ }^{2}$ Argentine Netional Ressirtch Cournel (CONICET)

Abstract

An exact unnlysis of the N -dimernsbonal blackbody rantintion prooess in a honostershe ith Temlles somurfo ls performed har valus of the nonextomeniod)
 Multiplens" (OL.M) tactinsure bas been caployed. The results are cocestrent
 aws of Plank, Sellar-Bettrinsam, and Wher are hnvetigated.

Analysis of residual spectra and the monopole spectrum for 3 K blackbody radiation by means of non-extensive thermostatistics

sherat

Exact and approximate results of non-extensive quantum statistics
(1) Truily zo mod of nemm

Abitact

A New Blackbody Radiation I aww Based on Fractional Calculus and its Application to NASA COBE Data

THE EUROPEAN PAHYSICGIL Journal B

tum

Some bounds upon the nonextensivity parameter using the approximate generalized distribution functions

BEC

A Nonextensive Approach to Bose-Einstein
 Condensation of Trapped Interacting Boson Gas

A. Lawani - J. Le Meur - Dmitrii Tayurskii - A. El Kaabouchi - L. Nivanen B. Minisini - F. Tsobnang - M. Pezeril - A. Le Mehautê - Q.A. Wang

Receivad: 30 June 2007 /Accepxed: 28 September 2007 / Pablished online: 27 November 2007 a Springer Science+Business Mcdia, LLC 2007

Generalized thermostatistics and Bose-Einstein condensation
H.G. Millere , F.C. Khanna ${ }^{\text {nec }}$, R. Teshima ${ }^{\text { }}$, A.R. Plastino ${ }^{\text {s* }}$, A. Plastino ${ }^{4}$

Muive Cutres She som

thamen

\because ScienceDirect

phrsics Letters a
\qquad

Note on

BEC in Nonextensive Statistical Mechanics tmp.

Non-extensive Bose-Einstein
Condensation Model
T.Michoel ${ }^{\text {म }}$, A. Verbeuref

Instituut voor Theoretische Fysica Katholieke Universiteit Leuven

Celestijnenlaan 200D
B-3001 Leuven, Belgium

Abstract

The imperfect Boson gas supplemented with a gentle repulsive interaction, is completely solved. In particular it is proved the 5 y / 68

$$
\begin{aligned}
& \text { Kouk San Fa' and E. K. Lenzi }
\end{aligned}
$$

Outline

(1) Preface
(2) Non-extensive Statistics

- Tsallis Entropy
- Tsallis q
- Tsallis PDF

3 Non-extensive quantum statistics

- PDF
- applications

(4) others

- Relativistic Non-extensive Thermodynamics[3]
- Non-extensive Hydrodynamics
- QGP
(5) κ-statistics
(6) Backup

Basic assumptions

$$
\begin{equation*}
S_{R}=-\int d \Omega p^{q} \ln _{q} p \tag{32}
\end{equation*}
$$

Similarly we have $p(x, v)=f(x, v) / Z_{q}$, where

$$
\begin{equation*}
f=\left[1-(1-q) \beta\left(H-\langle H\rangle_{q}\right)\right]^{1 /(1-q)}:=e_{q}^{-\beta\left(H-\langle H\rangle_{q}\right)} \tag{33}
\end{equation*}
$$

Easy to get

$$
\begin{gather*}
\int d \Omega f \equiv \int d \Omega f^{q} \tag{34}\\
\langle A\rangle_{q}:=\frac{\int d \Omega f^{q} A}{\int d \Omega f^{q}}=\frac{1}{Z_{q}} \int d \Omega f^{q} A \tag{35}
\end{gather*}
$$

Relativistic kinetic theory

The corresponding particle four-flow and energy-momentum flow are as

$$
\begin{gather*}
N^{\mu}(x)=\frac{1}{Z_{q}} \int \frac{d^{3} p}{p^{0}} p^{\mu} f \tag{36}\\
T^{\mu \nu}(x)=\frac{1}{Z_{q}} \int \frac{d^{3} p}{p^{0}} p^{\mu} p^{\nu} f^{q} \tag{37}
\end{gather*}
$$

Thus can we have the probability density $n=N^{\mu} U_{\mu}$, the energy density $\epsilon=T^{\mu \nu} U_{\mu} U_{\nu}$ and the equilibrium pressure $P=-\frac{1}{3} T^{\mu \nu} \Delta_{\mu \nu}$. Thus we also obtain that for massless system,

$$
\begin{equation*}
\epsilon=3 P \tag{38}
\end{equation*}
$$

theoretical work

Equation

Tamás S. Biró ${ }^{1,2}$ and Gábor Purcsel ${ }^{1,2,0}$

Institut für Theoretische Physik. Justus-Liebig-Universitaat, GieBen, Germany
${ }^{2}$ KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary Corresponding author; E-mail: pureselurmkikfki.hi

Abstract. We present first results of the development of a test particle simulation for solving non-extensive exteusions of the elastic two-particle Boltzmann
equation. Stationary one-particle emergy distribations with power-law tall are obtuined.

Acta Phys. Hung. A 22/3-4 (2005) 229-229

HEAVY ION

Quark Matter and Non-Extensive Thermodynamics
T.S. Biró ${ }^{1, a}$ and G. Purcsel ${ }^{1,6}$
${ }^{1}$ MTA KFKI, Research Institute for Particle and Nuclear Physics H-1525 Budapest, Hungary

Remeived 29 April 2004
Abstract. We investigate different ways of describing the thermodynamics of prehadromic matter in high-energy heavy-ion collisions. The non-extensive thermodynamics with certain assumptions enables an agreement between two
 per particle and $T=175 \mathrm{MeV}$ spectral slope temperature can bo assumed.

Central European Journal of Physics

Nonextensive perfect hydrodynamics - a model dissipative relativistic hydrodynamics?

PHYSICAL REVIEW C $8=0249015$ (2012)
Fluid dynamical equations and transport coefficients of relativistic gases with non-extensive statistics
T.S. Biot' and E. Molinír ${ }^{1,2}$ (Receival 12 Scpermber 2011: pulisiced 17 Fstruary 2012 ?

 eneegiss, lite beat conductivity, shesr, and baik riseosity:
DOF 10.1103% Yyskercas. $12+4015$

PACS cumberio: $24.10 \mathrm{Nz}, 25,75-4,47.75 .+1$

> Nonextensive/Dissipative Correspondence in Relativistic Hydrodynamics
> Takeshi OsADA ${ }^{1, *)}$ and Grzegorz WiLK ${ }^{2, * *)}$
> ${ }^{1}$ Theoretical Physics Lab., Faculty of Knowledge Engineering, Musashi Institute of Technology, Tokyo 158-8557, Japan ${ }^{2}$ The Andrzej Soltan Institute for Nuclear Studies, Hoza 69, oo6s1, Warsaw, Poland
> We argue that there is profound correspondence (the nonextensive/dissipative correspon-
> ence - NexDC) between the perfect nonextensive hydrodynamics and the usual dissipative hydrodynamics which leads to simple expression for dissipative entropy current.

Takestil Osaddat, Grzegorz WIk ${ }^{2+}$

Abstrace:

phenomenological analysis

Non-extensive equilibration in relativistic matter
Menearch Artele

Tamás S. Birot. Gábocr Purcsel

Acta Phys. Hung. A $21 / 1$ (2004) 85.94

heavy ion pHysics

What Is the Temperature in Heavy Ion Collisions? ${ }^{a}$
Tamás S. Biró, ${ }^{1}$ Gábor Purcsel ${ }^{1}$ and Berndt Müller ${ }^{2}$
${ }^{1}$ KFKI Res. Inst. Part. Nucl. Phys., H-1525 Budapest, P.O. Box 49, Hungary ${ }^{2}$ Physics Dept., Duke University, Durham, NC-27708, USA

Received 27 February 2004

Abstract. We consider the Tsallis distribution as a sourve of the apparent slope of one-particle spectra in heavy-jon collisions and investigate the equation of state of this special kind of quark matere in the framework of non-extensive thermodynamics. We relate the energy per particle to the power-law tail of spectra at a given temperature

Dissipative or just nonextensive hydrodynamics? Nonextensive/dissipative correspondence

T Osada ${ }^{1 *}$ and G Wilk ${ }^{\text {a }}$

Etred : outhisph.remmaduach x.tio

Abstract : We argye tart tere is correspondence between the pertect menexensive hydrodynamiks and
 singio

theoretical basis

Tsallis' non-extensive statistical mechanics can be considered an appropriate basis to deal with physical phenomena where strong dynamical correlations, long-range interactions and microscopic memory effects take place.[5]
And we expect in the range of temperature and density considered, the presence of strange particles does not significantly affect the main conclusions regarding the relevance of non-extensive statistical effects to the nuclear EOS.[6]
In many-body long-range-interacting systems, there has been observed the emergence of long-living quasi-stationary (metastable) states characterized by non-Gaussian power-law velocity distributions.[1]
Moreover, for such systems like QGP formed in heavy-ion collisions, the size ($N \ll N_{A}$) needs be re-consideration whether Boltzmann statistics is still appropriate.

phase transition

By requiring the Gibbs conditions on the global conservation of baryon number and electric charge fraction, the phase transition from hadronic matter to QGP is studied in the frame of non-extensive statistics.[5, 2]

$$
\begin{gather*}
P_{B}=\frac{2}{3} \sum_{i=n, p} \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{k^{2}}{E_{i} *(k)}\left[n_{i}^{q}(k)+\bar{n}_{i}^{q}(k)\right]-\frac{1}{2} m_{\sigma}^{2} \sigma^{2}-U(\sigma)+\frac{1}{2} m_{\omega}^{2} \omega^{2}+\frac{1}{2} m_{\rho}^{2} \rho^{2} \\
P_{q}=\frac{\gamma_{f}}{3} \sum_{f=u, d} \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{k^{2}}{e_{f}}\left[n_{f}^{q}(k)+\bar{n}_{f}^{q}(k)\right]-B \tag{39}\\
P_{g}=\frac{\gamma_{g}}{3} \int \frac{d^{3} k}{(2 \pi)^{3}} k n_{g}^{q}(k) \tag{41}
\end{gather*}
$$

heavy-ion collisions

R. Hagedorn[2] proposed the QCD inspired empirical formula to describe experimental hadron production data:[3]

$$
E \frac{d^{3} \sigma}{d^{3} p}=C\left(1+\frac{p_{T}}{p_{0}}\right)^{-n} \rightarrow \begin{cases}\exp \left(-\frac{n p_{T}}{p_{0}}\right) & p_{T} \rightarrow 0 \tag{42}\\ \left(\frac{p_{p}}{p_{T}}\right)^{n} & p_{T} \rightarrow \infty\end{cases}
$$

which coincides with

$$
\begin{equation*}
h_{q}\left(p_{T}\right)=C_{q} e_{q}^{-\beta p_{T}}=C_{q}\left[1-(1-q) \frac{p_{T}}{T}\right]^{\frac{1}{1-q}} \tag{43}
\end{equation*}
$$

for $n=1 /(q-1)$ and $p_{0}=n T$.

heavy-ion collisions

Others[4, 5, 6, 1, 2] criticized that thermodynamical consistency leads to

$$
\begin{equation*}
E \frac{d^{3} N}{d^{3} p} \propto\left[1-(1-q) \beta p_{T}\right]^{\frac{q}{1-q}} \tag{44}
\end{equation*}
$$

which comes from

$$
\begin{equation*}
\epsilon=g \int d \Omega E f^{q} \tag{45}
\end{equation*}
$$

heavy-ion collisions

During the last few years, G. G. Barnafoldi et al.[3] proposed a "soft+hard" model for p_{T} spectra as well as v_{2} measured in both $p p$ and AA collisions.

$$
\begin{equation*}
\left.\frac{d N}{2 \pi p_{T} d p_{T} d y}\right|_{y=0}=\sum_{i=s o f t, \text { hard }} A_{i} e_{q}^{-\beta_{i}\left[\gamma_{i}\left(m_{T}-v_{0, i} p_{T}\right)-m\right]} \tag{46}
\end{equation*}
$$

where "soft" is referred to hadrons yields stemming from the QGP part but "hard" to jets.

heavy-ion collisions

NON-EXTENSIVE THERMODYNAMCE, HEAVY ION Collisions and particle production AT RHIC ENERGIES

Systematic properties of the Tsallis distribution:
Energy dependence of paramecess is tivlen
Energy dependence of paramecers in light eneray $p-p$ collisions

heavy-ion collisions

heavy-ion collisions

PHYSICA

Non-extensive statistical mechanics and particle spectra in elementary interactions

Christian Beck*
Institute for Theoretical Physics, University of California at Santa Barbara, CA 93106-4030, USA
Received 2 March 2000; received in revised form 31 March 2000

[^0]PHYSICAL REVIEW D 89, 054014 (2014)
Particle production in relativistic $p p(\bar{p})$ and $A A$ collisions at RHIC and LHC energies with Tsallis statistics using the two-cylindrical multisource thermal model

Bao-Chun Li, ${ }^{*}$ Ya-Zhou Wang, Fu-Hu Liu, Xin-Jian Wen, and You-Er Dong
Department of Physics, Shanxi University, Taiyuan, Shanxi 030006, China (Received 19 December 2013; published 14 March 2014)
An improved Tsallis statistics is implemented in a multisource thermal model to describe systematically pseudorapidity spectra of charged particles produced in relativistic nucleon-nucleon ($p p$ or $p \bar{p}$) collisions at various collision energies and in relativistic nucleus-nucleus $(A A)$ collisions at different energies with different centralities. The results with Tsallis statistics using the two-cylindrical multisource thermal model are in good agreement with the experimental data measured at RHIC and LHC energies. It is found that the rapidity shifts of longitudinal sources increase linearly with collision energies and centralities in the framework. According to the laws, we also give a prediction of the pseudorapidity distributions in $p p(\bar{p})$ collisions at higher energies.

Outline

(1) Preface

2. Non-extensive Statistics

- Tsallis Entropy
- Tsallis q
- Tsallis PDF
(3) Non-extensive quantum statistics
- PDF
- applications

4) others

- Relativistic Non-extensive Thermodynamics[3]
- Non-extensive Hydrodynamics
- QGP
(5) κ-statistics
(6) Backup

κ-distributions

To get rid of the KMS problem[4] and others Tsallis' q-exponential meets, G. Kaniadakis[3, 4, 5, 6] proposed another form of distributions which lead to the κ-deformed statistical mechanics.

$$
\begin{equation*}
S_{K a}=\int d \Omega \frac{f^{1-\kappa}-f^{1+\kappa}}{2 \kappa}:=-\int d \Omega f \ln _{\kappa} f \tag{47}
\end{equation*}
$$

where $\ln _{\kappa} x=\frac{x^{\kappa}-x^{-\kappa}}{2 \kappa}$ is the κ-logarithm. With the OLM and MEM can we get its distribution:

$$
\begin{equation*}
f=e_{\kappa}^{-\beta(U-\mu)} \tag{48}
\end{equation*}
$$

where the κ-exponential is introduced,

$$
\begin{equation*}
e_{\kappa}^{x}=\left(\sqrt{1+\kappa^{2} x^{2}}+\kappa x\right)^{1 / \kappa}=\exp \left(\frac{1}{\kappa} \arcsin \kappa x\right) \tag{49}
\end{equation*}
$$

κ-distributions of a QGP[1]

Using the κ-deformed statistics to describe the QGP, the single particle distribution functions of quarks/anti-quarks and gluons respectively,

$$
\begin{gather*}
\bar{n}_{q / \bar{q}}=\frac{1}{\sqrt{1+\kappa^{2} \beta^{2}\left(k \mp \mu_{q}\right)^{2}}+\kappa \beta\left(k \mp \mu_{q}\right)+1}:=\frac{1}{e_{\kappa}\left(\beta\left(k \mp \mu_{q}\right)\right)+1} \\
\bar{n}_{g}=\frac{1}{\sqrt{1+\kappa^{2} \beta^{2} k^{2}}+\kappa \beta k-1}:=\frac{1}{e_{\kappa}(\beta k)-1} \tag{50}
\end{gather*}
$$

Thus can we study the phase transition with the similar steps. The same phase diagram as in the Tsallis case is obtained, since both of them are fractal in nature.

Thank You!!!

Backup Slides

Outline

(1) Preface
(2) Non-extensive Statistics

- Tsallis Entropy
- Tsallis q
- Tsallis PDF

3 Non-extensive quantum statistics

- PDF
- applications

4. others

- Relativistic Non-extensive Thermodynamics[3]
- Non-extensive Hydrodynamics
- QGP
(5) κ-statistics
(6) Backup

Fadeev's postulates

The amount of uncertainty of the distribution $\Omega=\left(p_{1}, p_{2}, \cdots, p_{n}\right)$, that is, the amount of uncertainty concerning the outcome of an experiment, the possible results of which have the probabilities $p_{1}, p_{2}, \cdots, p_{n}$, is called the Entropy of the distribution Ω. In 1957, Fadeev proposed that the simplest such set of postulates are as follows.
(1) It is a symmetric function of its variables for n.
(2) It is a continuous function of p_{i}.
(3) $H(1 / 2,1 / 2)=1$.
(4) $H\left(t p_{1},(1-t) p_{1}, p_{2}, \cdots, p_{n}\right)=H\left(p_{i}\right)+p_{1} H(t,(1-t))$.

q-Algorithm

From now on, Tsallis Entropy is re-written as

$$
\begin{equation*}
S_{q}=\frac{\sum_{i=1}^{W} p_{i}^{q}-1}{1-q}:=\sum_{i}^{W} p_{i} \ln _{q}\left(\frac{1}{p_{i}}\right)=-\sum_{i}^{W} p_{i}^{q} \ln _{q} p_{i} \tag{52}
\end{equation*}
$$

where the q-logarithm is introduced,

$$
\begin{equation*}
\ln _{q}(x):=\frac{x^{1-q}-1}{1-q} \tag{53}
\end{equation*}
$$

with its inverse function, q-exponential

$$
\begin{equation*}
e_{q}^{x}:=[1+(1-q) x]^{\frac{1}{1-q}} \tag{54}
\end{equation*}
$$

q-Algorithm

Consistently, non-linear generalized algebraic forms emerge, q-sum

$$
\begin{equation*}
x \oplus_{q} y:=x+y+(1-q) x y \tag{55}
\end{equation*}
$$

q-product

$$
\begin{equation*}
x \otimes_{q} y:=\left(x^{1-q}+y^{1-q}-1\right)^{1 /(1-q)} \tag{56}
\end{equation*}
$$

q-substraction

$$
\begin{equation*}
x \ominus_{q} y:=\frac{x-y}{1+(1-q) y} \tag{57}
\end{equation*}
$$

q-division

$$
\begin{equation*}
x \oslash y:=\left(x^{1-q}-y^{1-q}+1\right)^{1 /(1-q)} \tag{58}
\end{equation*}
$$

More are seen in [2, 1].

Conditional Probability

Consider two cases A and B with probabilities $P(A)$ and $P(B)$. The conditional probability of A under B is:

$$
\begin{equation*}
P(A \mid B)=\frac{P(A B)}{P(B)} \tag{59}
\end{equation*}
$$

If all A_{i} are independent(mutually incompatible), $P(B)>0$, then,

$$
\begin{equation*}
P\left(\sum A_{i} \mid B\right)=\sum P\left(A_{i} \mid B\right) \tag{60}
\end{equation*}
$$

Moreover, for the case that $B \subset \bigcup A_{i}$,

$$
\begin{equation*}
P(B)=\sum P\left(A_{i}\right) P\left(B \mid A_{i}\right) \tag{61}
\end{equation*}
$$

which is the total probability formula.

Bayes Formula

$$
\begin{equation*}
P\left(A_{i} \mid B\right)=\frac{P\left(A_{i}\right) P\left(B \mid A_{i}\right)}{\sum P\left(A_{j}\right) P\left(B \mid A_{j}\right)} \tag{62}
\end{equation*}
$$

Grand Canonical Ensemble ${ }^{* * *}$

Think about the constraints with the escort distribution $P_{i}=p_{i}^{q} / \sum p_{j}^{q}$, similarly we have

$$
\begin{equation*}
p_{i}=\frac{1}{\Xi_{q}} e_{q}^{-\beta^{\prime}\left(\epsilon_{i}-\mu N_{i}\right)} \tag{63}
\end{equation*}
$$

Easy to prove the q-thermodynamics above,

$$
\begin{gather*}
N_{q}=\sum P_{i} N_{i}=\frac{1}{\beta} \frac{\partial}{\partial \mu} \ln _{q} \Xi_{q} \tag{64}\\
U_{q}=-\frac{\partial}{\partial \beta} \ln _{q} \Xi_{q} \tag{65}
\end{gather*}
$$

Grand Canonical Ensemble ${ }^{* * *}$

Consider each distinct microstate i in energy levels $l(l=1,2, \cdots)$, that is, $\epsilon_{i}=\sum_{l} \varepsilon_{l} n_{l}$ and $N_{i}=\sum_{l} n_{l}$. So the q-grand partition function turns to be

$$
\begin{align*}
\Xi_{q} & =\sum_{\left\{n_{l}\right\}} e_{q}^{-\beta^{\prime} \sum_{l}\left(n_{l} \varepsilon_{l}-\mu n_{l}\right)}=\sum_{\left\{n_{l}\right\}} \prod_{l}^{q} e_{q}^{-\beta^{\prime}\left(\varepsilon_{l}-\mu\right) n_{l}} \\
& =\prod_{l}^{q} \sum_{n_{l}} e_{q}^{-\beta^{\prime}\left(\varepsilon_{l}-\mu\right) n_{l}}=\prod_{l}^{q} Z_{q}(l) \tag{66}
\end{align*}
$$

where $Z_{q}(l)=\sum_{n_{l}} e_{q}^{-\beta^{\prime}\left(\varepsilon_{l}-\mu\right) n_{l}}$.

Grand Canonical Ensemble ${ }^{* * *}$

(1) For Fermions,

$$
\begin{equation*}
Z_{q}(l)=1+e_{q}^{-\beta^{\prime}\left(\varepsilon_{l}-\mu\right)} \tag{67}
\end{equation*}
$$

SO

$$
\begin{equation*}
\bar{n}_{l}=\frac{1}{\beta} \frac{\partial}{\partial \mu} \ln _{q} Z_{q}(l)=\frac{1}{\sum p_{m}^{q}}\left(\frac{1}{e_{2-q}^{\beta^{\prime}\left(\varepsilon_{l}-\mu\right)}+1}\right)^{q} \rightarrow\left(\frac{1}{e_{2-q}^{\beta^{\prime}\left(\varepsilon_{l}-\mu\right)}+1}\right)^{q} \tag{68}
\end{equation*}
$$

(2) For Bosons, similarly,

$$
\begin{equation*}
\bar{n}_{l}=\frac{1}{\sum p_{m}^{q}}\left(\frac{1}{e_{2-q}^{\beta^{\prime}\left(\varepsilon_{1}-\mu\right)}-1}\right)^{q} \rightarrow\left(\frac{1}{e_{2-q}^{\beta^{\prime}\left(\varepsilon_{l}-\mu\right)}-1}\right)^{q} \tag{69}
\end{equation*}
$$

Asymptotic Approximation

$$
\begin{gather*}
\rho=e_{q}^{-\beta \mathcal{H}} / Z_{q} \tag{7}\\
Z_{q}=\operatorname{Tr} \exp \left(\frac{1}{1-q} \ln [1-(1-q) \beta \mathcal{H}]\right) \approx \operatorname{Tr} \exp \left(-\beta \mathcal{H}-\frac{1}{2}(1-q) \beta^{2} \mathcal{H}^{2}\right) \\
\\
\approx \operatorname{Tr} \exp (-\beta \mathcal{H})\left[1-\frac{1}{2}(1-q) \beta^{2} \mathcal{H}^{2}\right]=Z_{B G}\left[1-\frac{1}{2}(1-q) \beta^{2}\left\langle\mathcal{H}^{2}\right\rangle_{B G}\right]
\end{gather*}
$$

Asymptotic Approximation

$$
\begin{align*}
\langle\mathcal{O}\rangle_{q}= & \operatorname{Tr} \rho^{q} \mathcal{O}=\left\langle\rho^{q-1} \mathcal{O}\right\rangle_{1}=Z_{q}^{1-q}\left\langle\frac{\mathcal{O}}{1-(1-q) \beta \mathcal{H}}\right\rangle_{1} \\
= & Z_{q}^{1-q} Z_{q}^{-1} \operatorname{Tr}\left([1-(1-q) \beta \mathcal{H}]^{1 /(1-q)} \frac{\mathcal{O}}{1-(1-q) \beta \mathcal{H}}\right) \\
\approx & Z_{q}^{1-q} Z_{B G}^{-1}\left[1+\frac{1}{2}(1-q) \beta^{2}\left\langle\mathcal{H}^{2}\right\rangle_{B G}\right] \operatorname{Tr}\left\{\mathcal{O} \exp \left(\frac{q}{1-q} \ln [1-(1-q) \beta \mathcal{H}]\right)\right\} \\
\approx & Z_{q}^{1-q} Z_{B G}^{-1}\left[1+\frac{1}{2} a \beta^{2}\left\langle\mathcal{H}^{2}\right\rangle_{B G}\right] \operatorname{Tr}\left\{\mathcal{O} \exp \left(-(1-a) \beta \mathcal{H}+\frac{a}{2}(1-a) \beta^{2} \mathcal{H}^{2}\right)\right\} \\
\approx & Z_{q}^{1-q} Z_{B G}^{-1}\left[1+\frac{1}{2} a \beta^{2}\left\langle\mathcal{H}^{2}\right\rangle_{B G}\right] \operatorname{Tr}\left\{\mathcal{O} \exp (-\beta \mathcal{H})\left[1+a \beta \mathcal{H}-\frac{a}{2} \beta^{2} \mathcal{H}^{2}\right]\right\} \\
= & Z_{B G}^{1-q}\left[1+\frac{1}{2}(1-q) \beta^{2}\left\langle\mathcal{H}^{2}\right\rangle_{B G}\right] \\
& \left\{\langle\mathcal{O}\rangle_{B G}+(1-q) \beta\langle\mathcal{O H}\rangle_{B G}-\frac{1-q}{2} \beta^{2}\left\langle\mathcal{O} \mathcal{H}^{2}\right\rangle_{B G}\right\} \tag{72}
\end{align*}
$$

Asymptotic Approximation

Consider the system $\mathcal{H}=n h \nu$, with $\mathcal{O}=n$,

$$
\begin{equation*}
\langle n\rangle_{q} \approx\langle n\rangle_{B G} Z_{B G}^{1-q}\left\{1+(1-q) x\left[\frac{\left\langle n^{2}\right\rangle_{B G}}{\langle n\rangle_{B G}}+x\left(\left\langle n^{2}\right\rangle_{B G}-\frac{\left\langle n^{3}\right\rangle_{B G}}{\langle n\rangle_{B G}}\right)\right]\right\} \tag{73}
\end{equation*}
$$

deformed differential

From the generalized substraction rules we can easily have,

$$
\begin{gather*}
d_{q} x=(x+d x) \ominus_{q} x=\frac{d x}{1+(1-q) x} \tag{74}\\
d_{\kappa} x=(x+d x) \ominus_{\kappa} x=\frac{d x}{\sqrt{1+\kappa^{2} x^{2}}} \tag{75}
\end{gather*}
$$

Easy to see $\frac{d}{d_{q} x} e_{q}^{x}=e_{q}^{x}$ and $\frac{d}{d_{\kappa} x} e_{\kappa}^{x}=e_{\kappa}^{x}$.

Cited Papers

Esteban, M.D. and Morales, D., A Summary on Entropy Statistics, (1991).

国 C. E. Shannon, A mathematical theory of communication. Bell. System Tech. J., 27 (1948), 379-423.
(A. Renyi, On the measures of entropy and information. Proc. 4th Berkeley Symp. Math. Statist. and Prob., 1 (1961), 547-561.

- J. Aczel and Z. Dzroczy, Characteristerung der entropien positiver ordnung und der Shannonschen entropie. Act. Math. Acad. Sci. Hunger. 14 (1963) 95-121.
R R. S. Varma, Generalizations of Renyi's entropy of order α. J. Math. Sci., 1 (1966) 34-48.
国 J. N. Kapur, Generalized entropy of order α and type β. The Math. Seminar, 4 (1967) 78-82.

Cited Papers

雷 J．Havdra and F．Charvat，Concept of structural α－entropy． Kybernetika， 3 （1967）30－35．

目 S．Arimoto，Information－theoretical considerations on estimation problems．Information and Control． 19 （1971），181－194．

B．B．D．Sharma and D．P．Mittal，New non－additive measures of relative information．J．Comb．Inform．\＆Syst．Sci．， 2 （1975）， 122－133．
R．L．Taneja，D．，A study of generalized measures in information theory．Ph．D．Thesis．University of Delhi，（1975）．

R B．D．Sharma and L．J．Taneja，I．J．，Entropy of type（ α, β ）and other generalized measures in information theory．Metrika， 22 （1975）205－215．

固 C．Ferreri，Hypoentropy and related heterogeneity divergence measures．Statistica． 40 （1980）55－118．

Cited Papers

R. A. P. Sant'anna and I. J. Taneja, Trigonometric entropies, Jensen difference divergences and error bounds. Infor. Sci., 35 (1985) 145-156.
(1). Belis and S. Guiasu, A quantitative-qulitative measure of information in cybernetics systems. IEEI Tran. Inf. Th. IT-4 (1968), 593-594.
C. F. Picard, The use of Information theory in the study of the diversity of biological populations. Proc. Fifth Berk. Symp. IV (1979), 163-177.

圊 D. K. Fadeev, Zum Begriff der Entropie ciner endlichen Wahrsecheinlichkeitsschemas, Arbeiten zur Informationstheorie I, Berlin, Deutscher Verlag der Wissenschaften, 1957, 85-90.
C. Tsallis, J. Stat. Phys. 52, (1988) 479.

目 M. L. Lyra and C. Tsallis, PRL 80, 53(1998)

Cited Papers

固 F．Baldovin and A．Robledo，PRE 69，045202（R） 2004
固 E．Lutz，PRA 67，051402（R） 2003
回 P．Douglas，S．Bergamini and F．Renzoni，PRL 96， 110601 （2006）
© F．Caruso and C．Tsallis，PRE 78， 021102 （2008）
国 J．S．Andrade，Jr，G．F．T da Silva，A．A．Moreira，F．D．Nobre and E．M．F．Curado，PRL 105， 260601 （2010）
國 T．S．Biro，G．G．Barnafoldi and P．Van，EPJ A 49：110（2013）

Cited Papers

速 T．S．Biro，G．G．Barnafoldi，P．Van and K．Urmossy，arXiv： 1404．1256［hep－ph］
：V．Schwammle and C．Tsallis，J．Math．Phys．48， 113301 （2007）
园 A．Dukkipati，M．N．Murty and S．Bhatnagar，Phys．A 361 （2006） 124－138
园 C．Tsallis，Introduction to Nonextensive Statistical Mechanics， 84－102．
© F．Buyukkilic，D．Demirhan and A．Gulec，PLA 197 （1995）209－220．
国 R．Silva，D．H．A．L．Anselmo and J．S．Alcaniz，EPL 89 （2010） 10004.

Cited Papers

囯 R．Hagedorn，Nuovo Cimento，Suppl． 3 （1965） 147.
囯 R．Hagedorn，J．Rafelski，PLB 97，1980， 136
固 C．Beck，Phys．A 286 （2000） 164
国 U．Tirnakli，F．Buyukkilic and D．Demirhan，PLA 245 （1998）62－66．
国 C．Tsallis，F．C．S．Barreto and E．D．Loh，PRE 522 （1995）
固 F．Buyukkilic，I．Sokmen and D．Demirhan，Chaos，Solitons and Fractals 13 （2002）749－759．

Cited Papers

R H．Hasegawa，PRE 80 （2009） 011126.
园 A．K．Rajagopal，R．S．Mendes and E．K．Lenzi，PRL 80 18（1998）．
固 A．Lavagno，PLA 301 （2002）13－18．
围 T．S．Biro，K．M．Shen and B．W．Zhang，Phys．A 428 （2015） 410－415．

国 A．Lavagno，D．Pigato and P．Quarati，J．Phys．G：Nucl．Part．Phys． 37 （2010） 115102 （16pp）；and its citations 23－26．

目 A．Lavagno，D．Pigato，J．Phys．G：Nucl．Part．Phys． 39 （2012） 125106 （16pp）．

Cited Papers

围 W．M．Alberico，P．Czerski，A．Lavagno，M．Nardi and V．Soma， Phys．A 387 （2008）467－475．
A．Lavagno and D．Pigato，Phys．A 392 （2013）5164－5171．
击 G．Kaniadakis，Phys．A 296 （2001）405－425．
國 G．Kaniadakis，Statistical mechanics in the context of special relativity I，Phys．Rev．E 66， 056125 （2002）

囲 G．Kaniadakis，Statistical mechanics in the context of special relativity II，Phys．Rev．E 72， 036108 （2005）

嗇 G．Kaniadakis，EPJA 40 （2009）275－287

Cited Papers

A. M. Teweldeberhan, H. G. Miller and R. Tegen, Int. J. Mod. Phys. E 200312 669-673.
R R. Hagedorn, Riv. Nuovo Cimento 6, 1 (1983).
C. Y. Wong and G. Wilk, PRD 87, 114007 (2013)
: J. Cleymans and D. Worku, J. Phys. G: Nucl. Part. Phys. 39 (2012) 025006.
© B. C. Li, Y. Z. Wang and F. H. Liu, PLB 725 (2013) 352.
: M. D. Azmi and J. Cleymans, J. Phys. G: Nucl. Part. Phys. 41 (2014) 065001.

Cited Papers

國 M．Rybcynski and Z．Wlodarczyk，EPJC 74 （2014） 2785
国 H．Zheng，L．L．Zhu and A．Bonasera，arXiv： 1506.03156
國 G．G．Barnafoldi，K．Urmossy and G．Biro，J．Phys．Con．Ser． 612 （2015） 012048.
C．Tsallis and S．M．D．Queiros，AIP Conf．Proc．965，8（2007）； 21（2007）
T．S．Biro and P．Van，PRE 83 （2011） 061147.
固 S．Martinez，F．Pennini and A．Plastino，PLA 278 （2000）47－52．

Cited Papers

S. Abe and A. K. Rajagopal, PRL 91 (2003) 12.
(A. R. Plastino, A. Plastino and C. Tsallis, J. Phys. A: Math. Gen. 27 (1994) 5707-5714.
(is A. Chame and E. V. L. de Mello, J. Phys. A: Math. Gen. 27 (1994) 3663-3670.
国 A. I. Khinchin, Uspekhi matem. Nauk 8, 3(1953)
R R. J. V. Santos, Generalization of Shannon's theorem for Tsallis entropy, J. Math. Phys. 38, 4104 (1997)
固 S. Abe, Axioms and uniqueness theorem for Tsallis entropy, PLA 271, 74 (2000)

Cited Papers

圊 S. Umarov, C. Tsallis, M. Gell-Mann and S. Steinberg, arXiv:cond-mat.stat-mech0606038v2.

[^0]: Abstract
 We generalize Hagedorn's statistical theory of momentum spectra of particles produced in high-energy collisions using Tsallis' formalism of non-extensive statistical mechanics. Suitable non-extensive grand canonical partition functions are introduced for both fermions and bosons. Average occupation numbers and moments of transverse momenta are evaluated in an analytic way. We analyse the energy dependence of the non-extensitivity parameter q as well as the q-dependence of the Hagedorn temperature. We also take into account the multiplicity. As a final result we obtain formulas for differential cross sections that are in very good agreement with $e^{+} e^{-}$annihilation experiments. (C) 2000 Elsevier Science B.V. All rights reserved.

