Model-independent analysis of charge leptonic flavor violation processes at CEPC

Si-Hong Zhou

Institute of High Energy Physics, CAS

December 13, 2016

Outline

- ▶ Flavor physics at Z pole
- Charge leptonic flavor violation processes
- ► Results (?)
- Summary

$b\bar{b}$ are assumed to be produced in equal amount at Z pole with Belle II

cross section

Fermion Pair	$\sqrt{s} = 91 \text{ GeV}$	\sqrt{s} =250 GeV
$\nu \bar{\nu}$	2913	4.7
e^+e^-	1476	4.3
$\mu^+\mu^ \tau^+\tau^-$	1477	4.3
$\tau^+\tau^-$	1474	4.3
$u\bar{u}$	5238	10.7
$dar{d}$	6668	11.2
$c\bar{c}$	5237	10.7
$s\bar{s}$	6668	11.2
$bar{b}$	6549	10.8
hadron	30360	54.4

▶ The Z^0 factory with the high luminosity will produce about $10^{11}~b\bar{b}$. we assume instantaneous luminosity of $8\times10^{35} {\rm cm}^{-2} {\rm s}^{-1}$ and an integrated luminosity of $40ab^{-1}$ will be collected at CEPC with two-year running on Z pole at two collision points.

Providing unique opportunity for "extreme" heavy flavor experiments

- ► Low background compared to LHCb
- ▶ The b-pair flying with large momentum at a Z^0 factory will help significantly in the competition with Belle II.
- 1. The B_s decay and CP violation, $B_s \to \mu^+ \mu^-, B_s \bar{B_s}$ mixing
- 2. baryons decays, Ξ_b
- B_c
- 4. τ physics

B_c meson Decays

- $ightharpoonup B_c$ meson can not produced at Belle.
- ▶ For B_c meson, although CDF. D0 and LHCb had collected some data, many results have large uncertainties because of the large background.
- ▶ At CEPC, B_c meson will be produced in equal amount with with B_u , B_d and B_s .
- 1. The spectrums of Bc mesons
- 2. The life time and decay width
- 3. The weak decays of Bc meson with Charm
- 4. The weak decays of Bc meson without Charm
- 5. Looking for the Bc decays with neutral objects in the final states which cannot be reached by the LHCb. Especially interesting is to look for pure leptonic decays of $B_c \to \mu \nu$ and $B_c \to \tau \nu$ (V_{cb}) .
- au physics-the au-pair with large momentum and strongly boost

Charge leptonic flavor violation processes

- ► Charged Lepton Flavor Violation (cLFV) processes are very interesting to study because if they are observed, that would be a clear indication of physics beyond the Standard Model. discriminating between different new physics scenarios with high sensitive data.
- ▶ LHC、Belle、Babar reported cLFV in semileptonic decays of B mesons deviations from the SM of $2\text{-}3\sigma$ significance
 - The angular observable P_5' in $B \to K^* \mu^+ \mu^-$;
 - $B_s \to \phi \mu^+ \mu^-$;
 - R(K)

$$R(K) = \frac{Br[B \to K\mu^+\mu^-]}{Br[B \to Ke^+e^-]} = 0.745^{+0.090}_{-0.074} \pm 0.036.$$

ullet and the SM-forbidden decay $h o \mu au$ of the Higgs boson

▶ Contrary to LHCb and Belle II, CEPC will have more advantages in processes involving τ :

•
$$\tau \to 3\mu$$
.....
• $Z \to \tau^+\mu^-$
• $H \to \tau^+\mu^-$
• $B_d, B_s \to \tau^+\mu^-$
• $\text{Br}(B \to K\tau^+\tau^-)/\text{Br}(B \to K\mu^+\mu^-)$
•

The CPEC will allow us to study cLFV in τ , Z^0 and H^0 decays in different landscapes, the first two with a run of two years at Z^0 peak and the third one in five (or more) years at Z^0 + Higgs production.

Charge lepton flavour violating (cLFV) τ Decays

- ▶ The lepton τ is heavy enough to decay into hadrons, together with radiative $\tau \to \ell \gamma$ and leptonic $\tau \to \ell \ell' \bar{\ell}''$ decays, semileptonic decays $(\tau \to \ell \, (\pi, \eta^{(\prime)}, \pi \pi, \ldots))$ offer an interesting window to probe the underlying LFV mechanism, being particularly sensitive to different kinds of NP or effective operators in the couplings between quarks and leptons.
- ▶ Effective Lagrangian at low energy for LFV τ decays LFV $\tau \mu$ transitions can be organized according to the type of operators present:

$$\mathcal{L}_{eff} = \mathcal{L}_{eff}^{(D)} + \mathcal{L}_{eff}^{(\ell q)} + \mathcal{L}_{eff}^{(G)} + \mathcal{L}_{eff}^{(4\ell)} + \cdots,$$

where the dots stands for operators of higher dimension.

1. The effective dipole operators of dimension five $\mathcal{L}_{eff}^{(D)}$,

$$\mathcal{L}_{eff}^{(D)} = -\frac{m_{\tau}}{\Lambda^{2}} \left\{ \left(C_{DR} \,\bar{\mu} \,\sigma^{\rho\nu} \, P_{L} \,\tau + C_{DL} \,\bar{\mu} \,\sigma^{\rho\nu} \, P_{R} \,\tau \right) F_{\rho\nu} + \text{h.c.} \right\},$$
(1)

2. dimension-six four-fermion operators $\mathcal{L}_{eff}^{(\ell q)}$,

$$\begin{split} \mathcal{L}_{eff}^{(\ell q)} &= -\frac{1}{\Lambda^2} \sum_{q=u,d,s} \left\{ \left(\mathbf{C}_{\mathrm{VR}}^{\mathrm{q}} \, \bar{\mu} \, \gamma^{\rho} \, P_{R} \, \tau \right. + \mathbf{C}_{\mathrm{VL}}^{\mathrm{q}} \, \bar{\mu} \, \gamma^{\rho} \, P_{L} \, \tau \right) \bar{q} \, \gamma_{\rho} \, q \right. \\ &+ \left(\mathbf{C}_{\mathrm{AR}}^{\mathrm{q}} \, \bar{\mu} \, \gamma^{\rho} \, P_{R} \, \tau + \mathbf{C}_{\mathrm{AL}}^{\mathrm{q}} \, \bar{\mu} \, \gamma^{\rho} \, P_{L} \, \tau \right) \bar{q} \, \gamma_{\rho} \gamma_{5} \, q \\ &+ m_{\tau} m_{q} G_{F} \, \left(\mathbf{C}_{\mathrm{SR}}^{\mathrm{q}} \, \bar{\mu} \, P_{L} \, \tau + \mathbf{C}_{\mathrm{SL}}^{\mathrm{q}} \bar{\mu} \, P_{R} \, \tau \right) \bar{q} \, q \\ &+ m_{\tau} m_{q} G_{F} \, \left(\mathbf{C}_{\mathrm{PR}}^{\mathrm{q}} \, \bar{\mu} \, P_{L} \, \tau + \mathbf{C}_{\mathrm{PL}}^{\mathrm{q}} \, \bar{\mu} \, P_{R} \, \tau \right) \bar{q} \, \gamma_{5} \, q \\ &+ m_{\tau} m_{q} G_{F} \, \left(\mathbf{C}_{\mathrm{TR}}^{\mathrm{q}} \, \bar{\mu} \, \sigma^{\rho\nu} P_{L} \, \tau + \mathbf{C}_{\mathrm{TL}}^{\mathrm{q}} \, \bar{\mu} \, \sigma^{\rho\nu} \, P_{R} \, \tau \right) \bar{q} \, \sigma_{\rho\nu} \, q + \mathrm{h.c.} \right\}, \end{split}$$

3. The effective gluonic operators of dimension-seven $\mathcal{L}_{eff}^{(G)}$,

$$\mathcal{L}_{eff}^{(G)} = -\frac{m_{\tau}G_{F}}{\Lambda^{2}} \frac{\beta_{L}}{4\alpha_{s}} \left\{ \left(C_{GR} \bar{\mu} P_{L} \tau + C_{GL} \bar{\mu} P_{R} \tau \right) G_{\rho\nu}^{a} G_{a}^{\rho\nu} + \left(C_{\widetilde{G}R} \bar{\mu} P_{L} \tau + C_{\widetilde{G}L} \bar{\mu} P_{R} \tau \right) G_{\mu\nu}^{a} \widetilde{G}_{a}^{\mu\nu} + \text{h.c.} \right\},$$
(3)

with $\beta_L/(4\alpha_s)=-9\alpha_s/(8\pi)$. The dual tensor of the gluon field strength is defined by $\widetilde{G}^a_{\rho\nu}=\frac{1}{2}\,\epsilon_{\rho\nu\alpha\beta}\,G^{a,\,\alpha\beta}$.

4. The effective four-lepton operators (taking $au o 3\mu$ for example),

$$\mathcal{L}_{eff}^{(4\ell)} = -\frac{1}{\Lambda^{2}} \left\{ C_{SLL} \left(\bar{\mu} P_{L} \tau \right) \left(\bar{\mu} P_{L} \mu \right) + C_{SRR} \left(\bar{\mu} P_{R} \tau \right) \left(\bar{\mu} P_{R} \mu \right) \right. \\ + C_{VLL} \left(\bar{\mu} \gamma^{\mu} P_{L} \tau \right) \left(\bar{\mu} \gamma_{\mu} P_{L} \mu \right) + C_{VRR} \left(\bar{\mu} \gamma^{\mu} P_{R} \tau \right) \left(\bar{\mu} \gamma_{\mu} P_{R} \mu \right) \\ + C_{VLR} \left(\bar{\mu} \gamma^{\mu} P_{L} \tau \right) \left(\bar{\mu} \gamma_{\mu} P_{R} \mu \right) + C_{VRL} \left(\bar{\mu} \gamma^{\mu} P_{R} \tau \right) \left(\bar{\mu} \gamma_{\mu} P_{L} \mu \right) \\ + \text{h.c.} \right\}.$$
(4)

Table: Sensitivity of LFV τ decays to the different effective operators at tree-level. The symbol \checkmark (-) denotes that the operator does (not) contribute at tree-level to a given process. For operators involving quark bilinears, the relevant isospin structure (I=0,1) probed by a given decay is also specified.

	$\tau \rightarrow 3\mu$	$\tau \to \mu \gamma$	$\tau \to \mu \pi^+ \pi^-$	$\tau \to \mu K \bar{K}$	$\tau \to \mu \pi$	$\tau \to \mu \eta^{(\prime)}$
$C_{\mathrm{SLL,RR}}$	✓	-	_	_	_	-
$C_{VLL,RR}$	✓	-	_	_	-	_
$C_{VLR,RL}$	✓	-	_	_	-	_
$C_{DL,R}$	✓	✓	✓	✓	-	_
$C_{VL,R}^q$	-	-	✓ (l=1)	√ (I=0,1)	_	_
$C_{SL,R}^{q}$	-	-	✓ (I=0)	√ (I=0,1)	_	-
$C_{GL,R}$	-	-	✓	✓	-	_
$C_{AL,R}^{q}$	-	-	_	_	✓ (I=1)	✓ (I=0)
$C_{PL,R}^{q}$	_	_	_	_	✓ (I=1)	✓ (I=0)
$C_{\widetilde{G}L,R}$	_	_	_	-	_	1

ightharpoonup Current bounds on LFV au decay rates have been set by the Belle II, BaBar and LHCb collaborations.

$ au^-$ decay mode	Upper bound on BR	Upper bound at CEPC
$\mu \gamma$	4.4×10^{-8}	10^{-9}
$\mu^- \mu^+ \mu^-$	2.1×10^{-8}	
$\mu \pi^0$	1.1×10^{-7}	
$\mu\eta$	6.5×10^{-8}	
$\mu \eta'$	1.3×10^{-7}	
$\mu \pi^+ \pi^-$	2.1×10^{-8}	
$\mu \rho$	1.2×10^{-8}	
μf_0	3.4×10^{-8}	

▶ CEPC offers very interesting prospects in improving the current bounds especially for the process $\tau \to \mu \gamma$ where one expects to reach a sensitivity on the branching ratio of 10^{-9} , two orders of magnitude better than the current bound.

cLFV Higgs Decays

▶ 2015 CMS excess

$$\mathcal{B}_{exp}(H \to \mu^{\pm} \tau^{\mp}) = 0.84^{+0.39}_{-0.37}\%,$$

- ▶ LFV Higgs decays will be studied at the CEPC in $e^+e^- \to Z^0H$. With Z^0 tagging, about 1 million Higgs boson can be produced in a five-year running at the center-of-mass of 240-250 GeV.We expect to obtain a sensitivity of 10^{-4} .
- $h \to e\mu, e\tau, \mu\tau$ arise at tree level from the assumed flavor violating Yukawa interactions,

$$\mathcal{L}_{Y} \supset -Y_{e\mu}\bar{e}_{L}\mu_{R}h - Y_{\mu e}\bar{\mu}_{L}e_{R}h - Y_{e\tau}\bar{e}_{L}\tau_{R}h - Y_{\tau e}\bar{\tau}_{L}e_{R}h - Y_{\mu\tau}\bar{\mu}_{L}\tau_{R}h - Y_{\tau\mu}\bar{\tau}_{L}\mu_{R}h + h.c.$$
 (5)

Indirect constraints

1. Constraints from $\tau \to \mu \gamma$, $\tau \to e \gamma$.

2. Constraints from $au o 3\mu$, au o 3e

3.

Table: Present upper bounds and future expected sensitivities for cLFV

LFV Observable	Present Bound $(90\%CL)$	Future Sensitivity	CEPC
$BR(\mu \rightarrow e\gamma)$	4.2×10^{-13} (MEG 2016)	4×10^{-14} (MEG-II)	
$BR(\tau \rightarrow e\gamma)$	3.3×10^{-8} (BABAR 2010)	10 ⁻⁹ (BELLE-II)	
$BR(\tau \to \mu \gamma)$	4.4×10^{-8} (BABAR 2010)	10 ⁻⁹ (BELLE-II)	
$BR(\mu \rightarrow eee)$	1.0×10^{-12} (SINDRUM 1988)	10^{-16} Mu3E (PSI)	
$BR(\tau \rightarrow eee)$	2.7×10^{-8} (BELLE 2010)	10 ^{-9,-10} (BELLE-II)	
$BR(\tau \rightarrow \mu \mu \mu)$	2.1×10^{-8} (BELLE 2010)	$10^{-9,-10}$ (BELLE-II)	
$BR(\tau \to \mu \eta)$	2.3×10^{-8} (BELLE 2010)	$10^{-9,-10}$ (BELLE-II)	
$CR(\mu - e, Au)$	7.0×10^{-13} (SINDRUM II 2006)		
$CR(\mu - e, Ti)$	4.3×10^{-12} (SINDRUM II 2004)	10^{-18} PRISM (J-PARC)	
$CR(\mu - e, Al)$		3.1×10^{-15} COMET-I (J-PARC)	
		2.6×10^{-17} COMET-II (J-PARC)	
		$2.5 imes 10^{-17}$ Mu2E (Fermilab)	

LFV Observable	Present Bound $(95\%CL)$	CEPC
$BR(H \rightarrow \mu e)$	3.6×10^{-3} (CMS 2015)	
$BR(H \rightarrow \tau e)$	1.04×10^{-2} (ATLAS 2016), 0.7×10^{-2} (CMS 2015)	
$BR(H \to \tau \mu)$	1.43×10^{-2} (ATLAS 2016), 1.51×10^{-2} (CMS 2015)	10^{-4}
$BR(Z \to \mu e)$	1.7×10^{-6} (LEP 1995), 7.5×10^{-7} (ATLAS 2014)	
${\sf BR}(Z o au e)$	9.8×10^{-6} (LEP 1995)	
$BR(Z o au\mu)$	1.2×10^{-5} (LEP 1995), 1.69×10^{-5} (ATLAS 2014)	

cLFV Z decays

- ▶ ATLAS Collaboration improved the upper limit of the $Z \to e^{\pm}\mu^{\mp}$ to be 7.5×10^{-7}
- At the CEPC a few times of $10^{11} Z^0$ would be produced, and the sensitivities would be reached to 10^{-11}

$$\mathcal{L}_{Z} \supset g_{e\mu}\bar{e}_{L} \ Z\mu_{L} + g_{\mu e}\bar{\mu}_{R} \ Ze_{R} + g_{e\tau}\bar{e}_{L} \ Z\tau_{L} + g_{\tau e}\bar{\tau}_{R} \ Ze_{R}$$

$$+ g_{\mu\tau}\bar{\mu}_{L} \ Z\tau_{R} + g_{\tau\mu}\bar{\tau}_{L} \ Z\mu_{R}h + h.c.$$

$$(6)$$

▶ Indirect constraints on the Z coupling with e μ , τ are the same for those on higgs.

Summary

- ► The fermion pairs could be produced with large cross sections at Z-pole.
- ▶ For B, B_s , and τ lepton, CEPC offer us a good place for crosschecking the results of LHCb and B factory.
- ightharpoonup For B_c , the measurement results are expected to be precise due to the low background.
- ▶ High sensitivity constraints on cLFV (τ , higgs, Z) at CEPC.

THANK YOU