Plans for the CEPC-CDR -TPC tracker

Huirong 2016/12/12

Plan for the CDR

12,Dec.,201600

- Based on the pre-CDR contents
- Based on the LCTPC R&D significant activities
 - More sub-sections should be included and modified
 - □ More details simulation and R&D for circular machine should be added

6 The CEPC Detector			- Higgs run	145
6.1 Dete	Detector Overview		 Z-pole run Occupancy Distortion	145
6.4 Main	6.4 Main Tracking Detector – TPC			148
Baseline design 6.4.1 Design and Challenges			- Something could do - Something could not do Current R&D Mechanics and integration	
6.4.2 Atignment and Calibration				
		Mecha		
- Fi - Al - Di	ynment and calibration eld map in the magnetic gnment used laser stortion correction as/HV/Readout	(For any modu	le and any track reconstruction)	
- So	oftware/correction methods			

Plan for the CDR

Some considerations

12,Dec.,201600

- Timescale for the work?
 - One year (like to pre-CDR)
 - More time (Included the MOST R&D)
- Tracker system interface
 - MDI
 - Tracker system integration
- List of resources in tracker R&D
 - Circular and linear collider (critical challenges)
 - **IBF** for distortion (Who is doing what)
 - Alignment and calibration of tracker (How to do? Method?)
- Challenges or possible limitations/consideration
 - Requirement of CDR (Detector design simulation /version?)
 - Something could be do and NOT do? (estimation)
 - Common tracker consideration (alignment and calibration. Method?)
 - Man power
 - focusing in the critical challenges @IHEP,THU,MPGD
 - LCTPC R&D in the tracker reconstruction @global effort

Current R&D

12,Dec.,201600

- Simulation and estimation
 - □ Z-pole run for CEPC R&D (prepared one NOTE)
 - □ Tracker alignment and calibration (~100um resolution)
 - **•** Hybrid detector module concept
- Experiment and module R&D
 - Continuous Ion Back Flow detector module (GEM+MM)
 - IBF could reach to ~0.1%
 - Stable long time operation
 - Maintaining the electron transmittance
 - Plan to design and study in 1.0T magnetic (In LCTPC collaboration) /1~2years
 - **Prototype with laser system**
 - Laser system with 266nm
 - Drift velocity
 - Electric field in fieldcage
 - Waveform sampling electronics
 - Plan to assemble and test/~1 year

Key NSFC funding/IHEP+THU

MOST funding/IHEP+THU