BEAM ENERGY MEASUREMENT (BEM)

M.Q. Ruan & G.Y. Tang CEPC workshop @IHEP Nov 7th, 2017

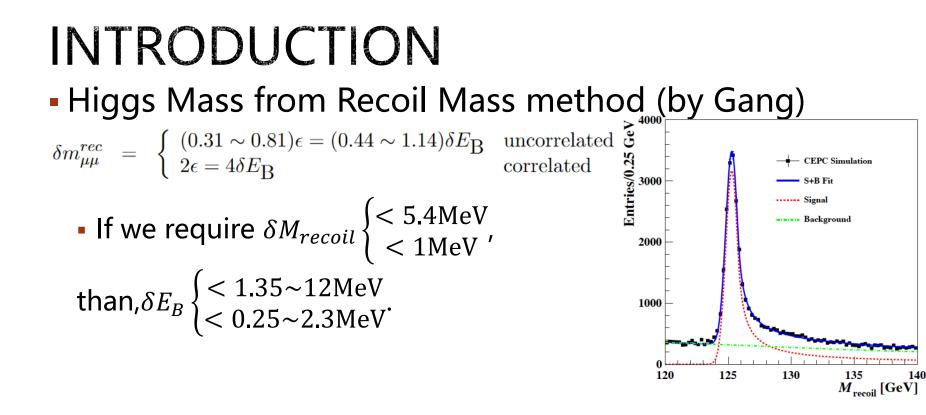
OUTLINE

- Introduction
- Compton scattering method
- Summary

To show the feasibility of Compton scattering method.

INTRODUCTION Higgs Mass from Recoil Mass method (by Gang) $\delta m_{\mu\mu}^{rec} = \begin{cases} (0.31 \sim 0.81)\epsilon = (0.44 \sim 1.14)\delta E_{\rm B} & \text{uncorrelated} \\ 2\epsilon = 4\delta E_{\rm B} & \text{correlated} \end{cases}$ **CEPC** Simulation S+B Fit Signal • If we require $\delta M_{recoil} \begin{cases} < 5.4 \text{MeV} \\ < 1 \text{MeV} \end{cases}$ Background 2000 than, $\delta E_B \begin{cases} < 1.35 \sim 12 \text{MeV} \\ < 0.25 \sim 2.3 \text{MeV} \end{cases}$ 1000 125 135 120 130 $M_{\rm recoil}$ [GeV] • $\sigma(ZH)$ measurement 300 Find Left/Right Shift with 0.5% Total ΗZ $\sigma(ZH) = 200.5 \text{fb}@240 \text{GeV}$ $HZ, Z \rightarrow \nu \nu$ 200 $WW \rightarrow H$ 200.5fb*(1.005)~@240.6GeV $\sigma(\mathbf{fb})$ 200.5fb*(0.995)~@239.5GeV 100 than, $\delta E_{cm} < 500$ MeV.

200

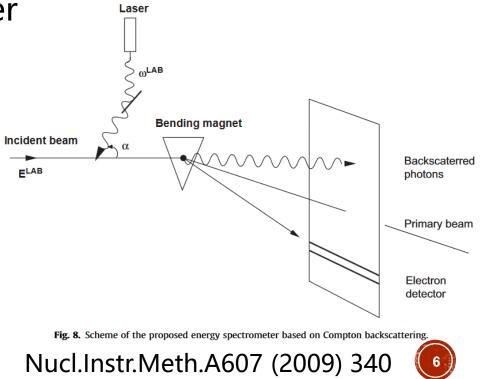

250

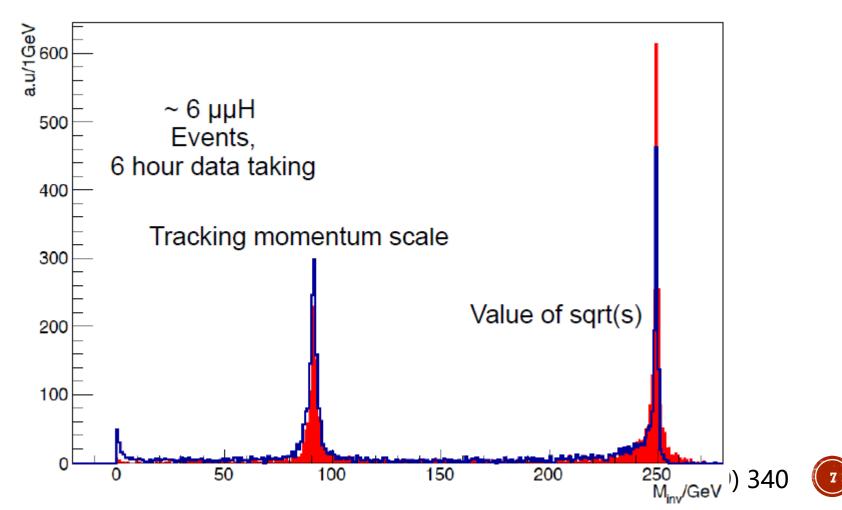
300

 $e^+e^- \rightarrow f\bar{f}H (GeV)$

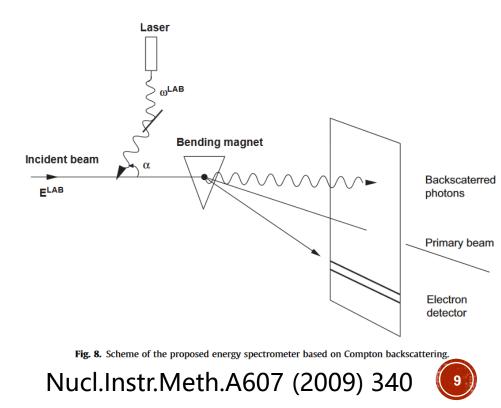

350

400


- No significant impact on other Higgs program
 - Event/Background selection efficiency.
 - $\sigma(ZH)$ measurement requires $\delta E_{cm} < 500$ MeV.
 - Branching ratio (Br(H->bb)) requires δm_H < 130MeV.


 WW threshold & Z pole: at least δE_B < 1MeV ~ LEP precision 2 × 10⁻⁵
 Try to do it better, δE_B < 100keV

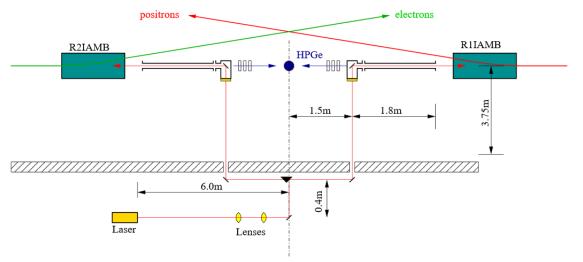
- $\mu\mu\gamma$ events (by Qinglei)
 - Uncertainty ~ 40-50MeV (CM energy)
- Resonant depolarization technique (@Z-pole, LEP)
 - Uncertainty ~ 2×10^{-5} (relative, beam energy)
- Compton scattering method. (beam energy)
- J/ψ production with other beams. (beam energy)


- $\mu\mu\gamma$ events (by Qinglei)
 - Uncertainty ~ 40-50MeV (CM energy)

Invaiant Mass of dimuon (+ photon) for $\mu\mu\gamma$ events

- $\mu\mu\gamma$ events (by Qinglei)
 - Uncertainty ~ 40-50MeV (CM energy)
- Resonant depolarization technique (@Z-pole, LEP)
 - Uncertainty ~ 2×10^{-5} (relative, beam energy)
- @CEPC: pre-CDR
 - Typical time to form polarized beam: 21 min
 - Beam lift time: 25 min
 - Feasible or not in this case?

- $\mu\mu\gamma$ events (by Qinglei)
 - Uncertainty ~ 40-50MeV (CM energy)
- Resonant depolarization technique (@Z-pole, LEP)
 - Uncertainty ~ 2×10^{-5} (relative, beam energy)
- Compton scattering method. (beam energy)
 - $E_{beam} \sim f(\alpha, \omega, \omega');$
 - *α*: crossing angle;
 - ω: laser photon energy;
 - ω': maximum energy of outgoing photon.

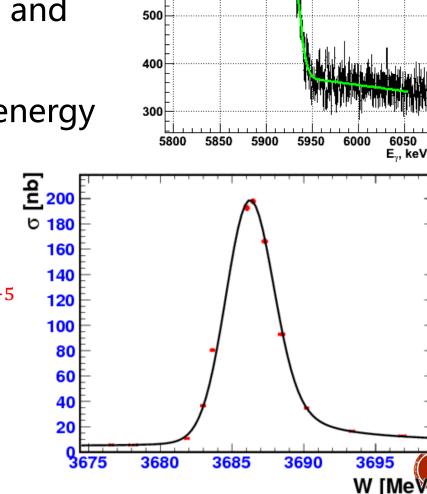

BEN@BEPCII Nucl.Instr.Meth.A659 (2011) 21

• Compton Back-scattering: (crossing angle $\alpha = 0$)

•
$$E_{beam} = \frac{\omega'}{2} \sqrt{1 + \frac{m_e^2}{\omega \, \omega'}}$$

- Hardware: locate at north IP of BEPCII
 - CO_2 Laser (ω =0.117eV, 50W) and optical system.
 - High purity germanium detector: 16384 channels.
 - Pulse generator and isotopes (Cs, Co, ...).
 - Data acquisition system.

Side by side measurement.

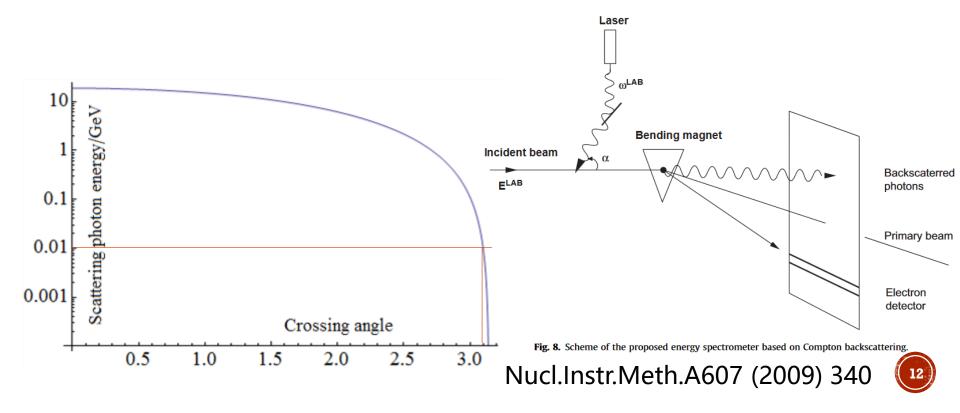


BEM@BEPCII

Compton Back-scattering: (crossing)

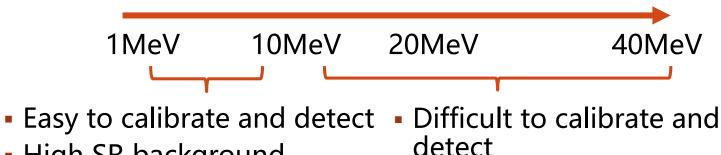
•
$$E_{beam} = \frac{\omega'}{2} \sqrt{1 + \frac{m_e^2}{\omega \, \omega'}}$$

- Calibration with isotopes and pulse generator.
- Fit of maximum photon energy (Compton edge).
- Performance studied by comparison of $\psi(2S)$
 - relative uncertainty $\sim 2 \times 10^{-5}$


600

Positrons: 2010.11.23 | 06:32:58 -- 11:34:01 | 2010.11.23

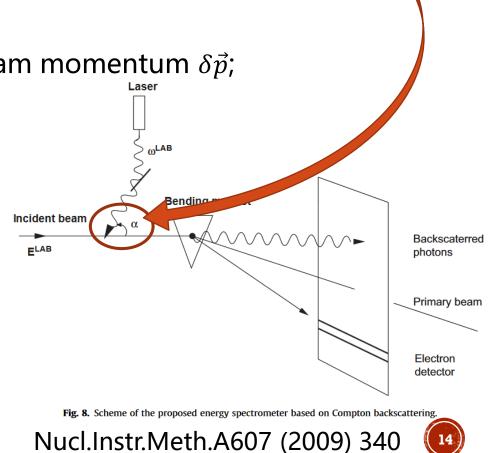
JINST 12 (2017) no.07, C07019


- If we do the same work @CEPC
 - 120GeV(beam) + 0.11eV(CO2 laser)→20GeV (maximum scattering photon energy). Too large to be measured precisely.
 - Change crossing angle, $\alpha \in (3.06, 3.13)$.

The maximum energy of outgoing photon $\omega' \in (1,40)$ MeV.

- If we do the same work @CEPC
 - 120GeV(beam) + 0.11eV(CO2 laser)→20GeV (maximum scattering photon energy). Too large to be measured precisely.
 - Change crossing angle, $\alpha \in (3.06, 3.13)$.

The maximum energy of outgoing photon $\omega' \in (1,40)$ MeV.



High SR background

- Low SR background
- Optimize the choice of crossing angle by a full simulation.

- Example: crossing angle $\alpha = 3.086$, (scatter maximum 20MeV photon)
 - $\delta E_{beam} \sim \sqrt{(2.2 \times 10^6 \times \delta \alpha)^2 + (3.0 \times 10^3 \times \delta \omega')^2}$
 - If $\delta E_{beam} < 1$ MeV, $\delta \alpha < 4.2 \times 10^{-7}$ and $\delta \omega' < 3 \times 10^{-4}$ MeV.
- Impact on $\delta \alpha$:
 - Beam orbit, variance of beam momentum $\delta \vec{p}$;
 - Laser alignment.
- Impact on $\delta \omega'$:
 - Detector calibration;
 - Statistic error.

- Example: crossing angle $\alpha = 3.086$, (scatter maximal 20MeV photon)
 - $\delta E_{beam} \sim \sqrt{(2.2 \times 10^6 \times \delta \alpha)^2 + (3.0 \times 10^3 \times \delta \omega')^2}$
 - If $\delta E_{beam} < 1$ MeV, $\delta \alpha < 4.2 \times 10^{-7}$ and $\delta \omega' < 3 \times 10^{-4}$ MeV.
- Impact on $\delta \alpha$:
 - Beam orbit, variance of beam momentum $\delta \vec{p}$;
 - Laser alignment.
- Impact on $\delta \omega'$:
 - Detector calibration;
 - Statistic error.
- Beam position monitor + long linear orbit
- Long laser path

Beam position monitor + long linear orbit.

To measure the mean value of α .

- if BPM precision 0.1mm, 2km linear orbit in needed.
- variance of beam momentum δp_{\perp} , δp_{\parallel}
 - If $\frac{\delta p_{\perp}}{p} < 4.2 \times 10^{-7}$, acceptable systematic error.
 - If $\frac{\delta p_{\perp}}{p} \ge 4.2 \times 10^{-7}$, the ω' will be smeared. The distribution should be known or estimated to extract ω' .
 - Beam energy spread ($\delta p_{\parallel}, \delta p_{\perp}$) ~ 0.1%. Need to know the beam energy distribution. (Maybe Gaussian is a reasonable assumption.)
- It is crucial to input beam parameters to BEM.

- Example: crossing angle $\alpha = 3.086$, (scatter maximal 20MeV photon)
 - $\delta E_{beam} \sim \sqrt{(2.2 \times 10^6 \times \delta \alpha)^2 + (3.0 \times 10^3 \times \delta \omega')^2}$
 - If $\delta E_{beam} < 1$ MeV, $\delta \alpha < 4.2 \times 10^{-7}$ and $\delta \omega' < 3 \times 10^{-4}$ MeV.

Incident beam

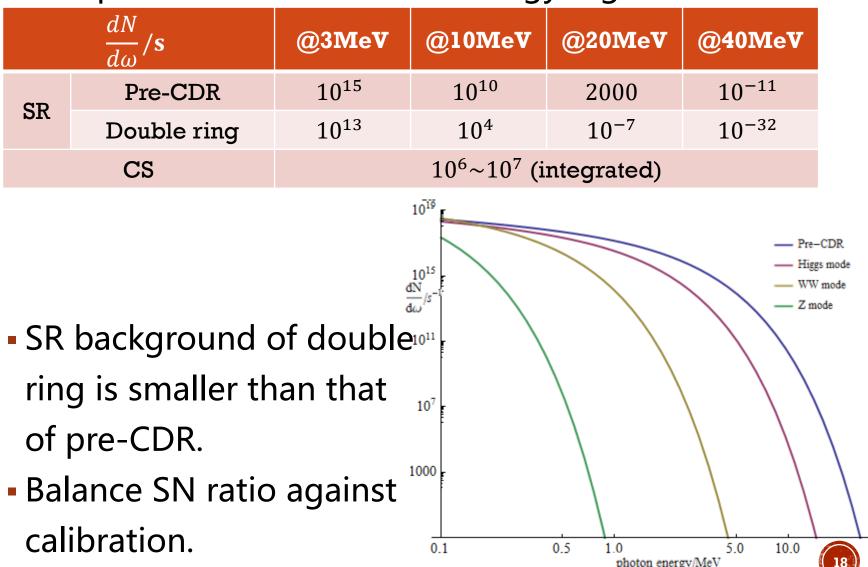
- Impact on $\delta \alpha$:
 - Beam orbit, variance of beam momentum $\delta \vec{p}$;
 - Laser alignment.
- Impact on $\delta \omega'$:
 - Detector calibration;
 - Statistical error.
- Isotopes to calibrate detector.
 - Co, Cs, plutonium-carbon... Still need more.
- Signal-noise ratio? Statistical error?

Fig. 8. Scheme of the proposed energy spectrometer based on Compton backscattering.

Nucl.Instr.Meth.A607 (2009) 340

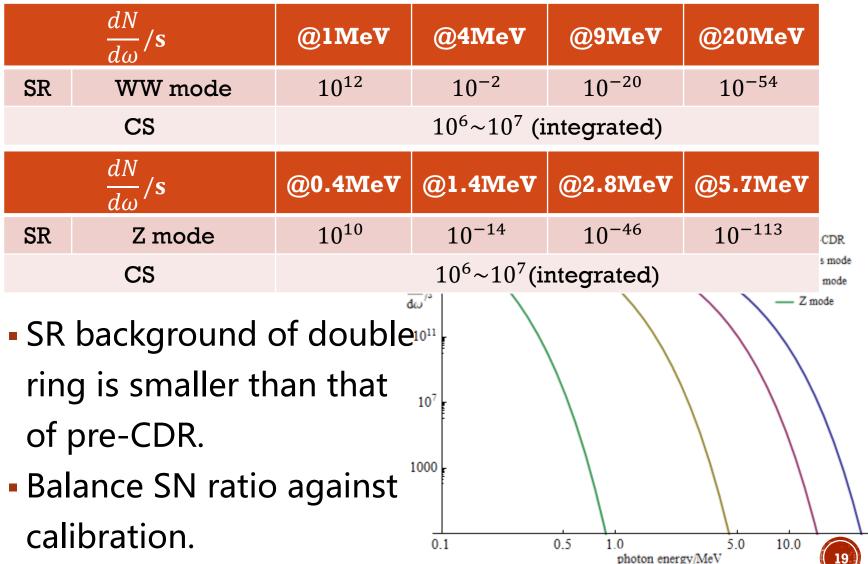
Bending magnet

ഗLAB

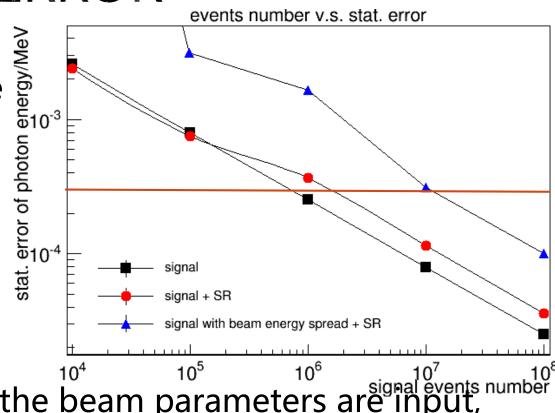

Backscaterred photons

Primary beam

Electron detector


SIGNAL-NOISE RATIO

Compare between different energy region:


SIGNAL-NOISE RATIO

Compare between different energy region:

STATISTICAL ERROR

- The more statistics are, the smaller the statistical error is.
 - Efficiency
 - Laser power
 - Time
- Depends on the details of fits.

- The more precisely the beam parameters are input,
 the better fit we obtain.
 - Energy spread, orbit, emittance...

SUMMARY & OUTLOOK

- We can measure beam energy precisely (error~1MeV, or even smaller),
 - if uncertainty of crossing angle α can be handled.
 - beam orbit is under control?
 - variance of beam momentum is clearly known?
 - Iaser alignment is well?
 - if we can calibrate germanium detector.
 - suitable isotopes? (10 ~ 40MeV)
 - detector damage by (SR) radiation?
 - if statistical error is small enough.
 - detector efficiency?
 - fit scheme?
 - Iaser power?

SUMMARY & OUTLOOK

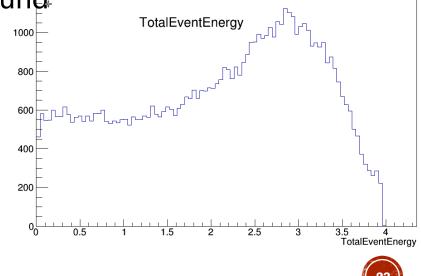
- We can measure beam energy precisely (error~1MeV, or even smaller),
 - if uncertainty of crossing angle α can be handled.
 - beam orbit
 - beam momentum

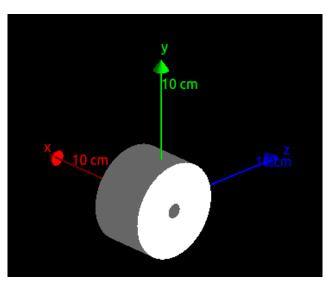
- discuss with accelerator experts to understand beam property.
- laser alignment optics system with long light path.
- if we can calibrate detector.
 - isotopes neutron capture or proton resonance reactions
- detector damage by (SR) radiation?
- if statistical error is small enough.
 - detector efficiency?

study on detector and simulation.

- fit scheme?
- laser power pulse laser or multiple reflection

SUMMARY & OUTLOOK


We have been working on full simulation of BEM system based


on Geant4: (by Guangyi Tang,

Prof. Wang, Prof. Lou, ...)

- Beam effects;
- Detector performance and optimization;
- SR (and other radiative background) if exists); 1000
- Calibration;
- Fit scheme.

Thank you!

