

Radiation Backgrounds at CEPC

Hongbo Zhu (IHEP) On behalf of the CEPC MDI group

International Workshop on High Energy Circular Electron Positron Collider 6 – 8 November, 2017

Outline

- Interaction region (IR) Layout
- Background categorization and estimation
- Summary and plan

Interaction Region

- More Updates: forward tracking optimization (geometry + cable routing), central Beryllium beam pipe extension, detector shielding, and more ...
- Machine/detector integration

Machine Parameters

	Higgs	W	Z			
Number of IPs		2				
Energy (GeV)	120	80	45.5			
Circumference (km)	100					
SR loss/turn (GeV)	1.68	0.33	0.035			
Half crossing angle (mrad)	16.5					
Piwinski angle	2.75	4.39	10.8			
N_{e} /bunch (10 ¹⁰)	12.9	3.6	1.6			
Bunch number	286	5220	10900			
Beam current (mA)	17.7	90.3	83.8			
SR power /beam (MW)	30 30		2.9			
Bending radius (km)	10.9					
Momentum compaction (10 ⁻⁵)	1.14					
$\beta_{IP} x/y (m)$	0.36/0.002					
Emittance x/y (nm)	1.21/0.0036	0.54/0.0018	0.17/0.0029			
Transverse σ_{IP} (um)	20.9/0.086	13.9/0.060	7.91/0.076			
$\xi_{y}/\xi_{y}/\text{IP}$	0.024/0.094	0.009/0.055	0.005/0.0165			
$V_{RF}(\text{GV})$	2.14	0.465	0.053			
f_{RF} (MHz) (harmonic)	650 (217500)					
Nature bunch length σ_{z} (mm)	2.72	2.98	3.67			
Bunch length σ_{z} (mm)	3.48	3.7	5.18			
HOM power/cavity (kw)	0.46 (2cell)	0.32(2cell)	0.11(2cell)			
Energy spread (%)	0.098	0.066	0.037			
Energy acceptance requirement (%)	1.21					
Energy acceptance by RF (%)	2.06	1.48	0.75			
Photon number due to beamstrahlung	0.25	0.11	0.08			
Lifetime due to beamstrahlung (hour)	1.0					
Lifetime (hour)	0.33 (20 min)	3.5	7.4			
F (hour glass)	0.93	0.96	0.986			
$L_{\rm max}/{\rm IP} (10^{34} {\rm cm}^{-2} {\rm s}^{-1})$	2.0	4.1	1.0			

🖌 Go higher

• **Bunch spacing**: ~ 500/50/30 ns for Higgs, W and Z

Radiation Backgrounds

- Much less harsher than LHC, but not detector background free
- Beam induced backgrounds \rightarrow Unavoidable source, could be barely
 - Beamstrahlung
 - Pair production
 - Hadronic background
- Machine induced backgrounds \rightarrow
 - Synchrotron radiation
 - Radiative Bhabha scattering
 - Beamstrahlung
 - Beam-gas interaction
 - Beam injection
 - Beam dumps
 - ... and more

Possible reduction with improved machine design

suppressed with parameter tuning

Beam lost particles (energy acceptance of 1.5%)

7 November, 2017

MDIToolkit

 Our former postdoc integrated most of the event generators, particle tracking and detector simulation (+ customized code
 ✓ development) into one framework → making background standardized and easier

- Most of the presented results based on this framework
- Maintenance and further development underway

O. Xiu

Beamstrahlung

Beamstrahlung

- Charged particles deflected by the strong field of the opposite bunch will emit radiation → beamstrahlung
- Keep machine/detector components far away from the kinematic-edge formed by particles from pair production

Most of the charged particles from pair production are confined within the beam pipe and not interacting with any machine/detector components.

Helical trajectories formed charged particles from the pair edge

7 November, 2017

Pair Production

W. Xu and X. Wang

 Beamstrahlung and pair production simulated with the Guinea-Pig program; interfaced to detector simulation

Hadronic backgrounds not shown but negligible

Radiative Bhabha Scattering

W. Xu, X. Wang and S. Bai

 Beam lost particles (radiative Bhabha scattering, beamstrahlung, beam gas interaction ...) might get lost in the IR and cause particle shower if hitting machine/detector components → dominant background for Belle II

Collimators

• Collimators introduced to suppress effectively the detector backgrounds (without disturbing the beam).

	Position	Distance to IP/m	Beta function/m	Horizontal Dispersion/m	Phase	BSC/2/m	Range of half width allowed/mm
APTX1	D1I.1884	2206.08	108.35	0.24	348.62	0.010242	1~10
APTX2	D1I.1909	1713.85	104.60	0.24	350.37	0.010115	1~10
APTY1	D1I.1897	1956.16	116.81	0.12	349.32	0.004128	1~4.1
APTY2	D1I.1908	1745.21	125.22	0.16	350.07	0.004168	1~4.1

Significant reduction in hit density and TID
Effective (not shown) to suppress backgrounds from beam lost particle due to beamstrahlung

Combined Results

 Radiative Bhabha scattering and pair production combined yield 2.5 hits/cm²·BX, annual TID ~ 2.5 MRad and NIEL ~10¹² n_{ed}/cm² ← safety factors of 10 applied

NIEL Distributions

Synchrotron Radiation

• Special and crucial background at circular machines

Central Region

• Direct and back-scattered SR photons should be avoided as much as possible.

SR Photon Suppression

Effectiveness of Mask Tips

Surface	Where	Watts	Incident Photons	Scattered fraction	CP SA fraction	Est. hits on CP
А	0.7-2.2	37.25	1.27e10	.009	4.7e-5	5.2e3
В	2.2-3.93	2.07	7.06e8	.03	1.04e-5	220
С	3.93-4.43	41.03	1.40e10	.03	0.0	0.0
D	4.43-5.91	2.55	8.71e8	.03	3.7e-6	97
Surface	Where	Watts	Incident photons	Scattered fraction	CP SA fraction	Est. hits on CP
А	0.7-2.2					\frown
В	2.2-3.93	0.0	0.0	0.0	0.0	0.0
С	3.93-4.43	41.03	1.40e10	.03	0.0	0.0
D	4.43-5.91	2.55	8.71e8	.03	3.7e-6	~97
Mask 2.1	1.5 mm	11.16	3.81e9		0.0	0.0
Tip at 1.4	500 um	4.56	1.56e9			56
Tip at 2.1	500 um	4.56	1.56e9			25
Tip at 3.93	500 um	4.27	1.46e9			~6.5

7 November, 2017

Radiation Backgrounds, H. Zhu

Validation with BDSim

K. Li

- Detailed beam pipe structure being implemented
- Mask tips to be implemented and their effectiveness to be verified
- Backgrounds in detectors to be estimated

7 November, 2017

Summary

- Have studied detector backgrounds due to beamstrahlung (pair production), radiative Bhabha scattering and synchrotron radiation (partly) ...
- Need to complete calculation of detector backgrounds from "the other sources"
- To propose preliminary designs of collimators, masks and detector shielding ... repeat all the calculation