Some aspects of flavor physic at CEPC

Qin Qin (Uni. Siegen)

International workshop on CEPC

* A glance at flavor measurements at CEPC

* Two examples

- Lepton flavor violating Higgs, Z and tau decays
- Anomalous weak dipole moments of tau
- * Summary

A glance at CEPC

- Higgs involved (1 million Higgs bosons)
 Hff and Hff' couplings
- * Zinvolved (10 100 billion Z bosons)
 - Zff and Zff' couplings

* Heavy hadron decays (CEPC vs Belle II)

<i>b</i> -hadron species	Fraction	Number	Fraction	Number
•	in decays of	of <i>b</i> -hadron	in $\Upsilon(4S)/(5S)$ decays	of <i>b</i> -hadron
	$Z^0 \to b\bar{b}$	at Z^0 peak		at $\Upsilon(4S)/(5S)$
B^0	0.404 ± 0.009	0.6×10^{10}	$0.486 \pm 0.006 (\Upsilon(4S))$	4.9×10^{10}
B^+	0.404 ± 0.009	0.6×10^{10}	$0.514 \pm 0.006 (\Upsilon(4S))$	5.1×10^{10}
B_s	0.103 ± 0.009	0.02×10^{10}	$0.201 \pm 0.030 (\Upsilon(5S))$	0.6×10^{10}
<i>b</i> baryons	0.089 ± 0.015	0.02×10^{10}	_	—

No chance for mesons, unless other advantages (tau reconstruction).

A glance at CEPC * Higgs couplings CEPC > ... * Z couplings) CEPC > ... * heavy baryon production and decays CEPC > ... * tau production and decays CEPC ? Belle II

Lepton flavor violation (1st example)

- * Induced by SUSY, extra dimension ...
- * Exp. hints of lepton non-uni. in B decays
 - $R(D^*) \equiv \mathcal{B}[B \to D^* \tau \nu] / \mathcal{B}[B \to D^* \ell \nu]$ 3.4 σ
 - $R(D) \equiv \mathcal{B}[B \to D\tau\nu]/\mathcal{B}[B \to D\ell\nu]$ 2.3 σ
 - $R_K \equiv \mathcal{B}[B \to K\mu\mu] / \mathcal{B}[B \to Kee]_{q^2 \in [1,6] \text{GeV}^2}$ 2.6 σ
 - $R_{K^*}^{\text{low}} \equiv \mathcal{B}[B \to K^* \mu \mu] / \mathcal{B}[B \to K^* ee]_{q^2 \in [0.045, 1.1] \text{GeV}^2}$ 2.1 σ $R_{K^*}^{\text{high}} \equiv \mathcal{B}[B \to K^* \mu \mu] / \mathcal{B}[B \to K^* ee]_{q^2 \in [1.1, 6] \text{GeV}^2}$ 2.4 σ

Lepton flavor violation (1st example)

- * Induced by SUSY, extra dimension ...
- * Exp. hints of lepton non-uni. in B decays
 - $R(D^*), R(D), R_K, R_{K^*}, ...$

* LFV Higgs decay appeared and disappeared

• $H \to \tau \mu$

CMS: $\mathcal{B}[H \to \tau \mu] = (0.84^{+0.39}_{-0.37})\%$ (1502.07400) $\Rightarrow (-0.76^{+0.81}_{-0.84})\%$ (CMS PAS HIG-16-005)

ATLAS: $\mathcal{B}[H \to \tau \mu] = (0.53 \pm 0.51)\%$ (1604.07730)

Lepton flavor violation (1st example)

- * Induced by SUSY, extra dimension ...
- * Exp. hints of lepton non-uni. in B decays
 - $R(D^*), R(D), R_K, R_{K^*}, ...$

* LFV Higgs decay appeared and disappeared

• $H \to \tau \mu$

CMS: $\mathcal{B}[H \to \tau \mu] = (0.84^{+0.39}_{-0.37})\%$ (1502.07400) $\Rightarrow (-0.76^{+0.81}_{-0.84})\%$ (CMS PAS HIG-16-005)

ATLAS: $\mathcal{B}[H \to \tau \mu] = (0.53 \pm 0.51)\%$ (1604.07730)

To probe LFV with cleaner channels.

* 3 channels

• $H \rightarrow e^{\pm}\mu^{\mp}, e^{\pm}\tau^{\mp}, \mu^{\pm}\tau^{\mp}$ * Reconstruct tau by mu or e + missing energy

* Reconstruct Z by <u>dijet</u>

The dominant production process at the Higgs factory (240 -250 GeV)

Why such choices?

• $\mathcal{B}(Z \to jj) \sim 70\%;$

• Ensure lepton flavor changing vertices: if rebuilding τ by $e + \not\!\!\!E_T$ in $H \to e\tau$, eejj will cause large background.

- * MadGraph: generator for signals
- * Whizard: generator for background See Kilian's talk
- * Pythia: hadronization
- * **Delphes:** fast simulation

Four-fermion background

Category ^a	cross section [fb]	Event No. [10000]	
SZ_11	342	171	• SZ_ll: $e^+e^-\tau^+\tau^-;$
SZ_ql	452	226	• SZ_ql: $e^+e^-jj;$
ZZ_ll	18.8	9.4	• ZZ_ll: $\mu^+\mu^-\tau^+\tau^-, \tau^+\tau^-\tau^+\tau^-;$
ZZ_ql	233	117	• ZZ ₋ ql: $\mu^+\mu^-jj$, $\tau^+\tau^-jj$;
ZZ_qq	830	415	• ZZ ₋ qq: $cc\overline{c}\overline{c}$, $dd\overline{d}\overline{d}$, $d\overline{d}b\overline{b}$, $bb\overline{b}\overline{b}$, $u\overline{u}s\overline{s}$, $u\overline{u}b\overline{b}$, $s\overline{s}b\overline{b}$;
SW_ql	667	333	• SW_ql: $e^+\nu_e \bar{c}s;$
WW_ql	1792	896	• WW_ql: $\tau^+ \nu_\tau \bar{u}d$, $\mu^- \bar{\nu}_\mu c\bar{s}$, $\mu^- \bar{\nu}_\mu u\bar{d}$.

* To set cuts

Signal and background events with cuts of Higgs->mu,tau

Cuts	SZ_11	SZ_ql	ZZ_11	ZZ_ql	ZZ_qq	SW_ql	WW_ql	signal
$N_{e,\mu} = 1, N_j = 2$	5684	1248	1464	16504	1945	1063	1627	856
$60 < m_{jj} < 100$	1578	428	606	13504	412	320	518	736
$m_{e\not\!\!\!E} < 5$	26	16	84	2706	30	5	0	583
$120 < m_{\mu\tau} < 130$	0	0	2	3	0	0	0	522

Signal and background events with cuts of Higgs->e,mu

Cuts	SZ_11	SZ_ql	ZZ_ll	ZZ_ql	ZZ_qq	SW_ql	WW_ql	signal
$N_{e,\mu} = 1, N_j = 2$	5684	1248	1464	16504	1945	1063	1627	5617
$70 < m_{jj} < 100$	1099	267	408	12277	321	221	461	4216
$117 < m_{e\mu} < 127$	1	0	0	0	0	0	0	4115

Signal and background events with cuts of Higgs->e,tau

Cuts	SZ_11	SZ_ql	ZZ_ll	ZZ_ql	ZZ_qq	SW_ql	WW_ql	signal
$N_{e,\mu} = 1, N_j = 2$	5684	1248	1464	16504	1945	1063	1627	868
$66 < m_{jj} < 94$	1119	290	448	11828	412	320	518	693
$m_{\mu E_M} < 4$	423	95	41	1892	30	5	0	530
$121 < m_{e\tau} < 130$	9	1	0	0	0	0	0	479
$ \eta_e < 2$	5	0	0	0	0	0	0	456

$$\mathcal{L}^{H \to \mu^{\mp} \tau^{\pm}} = -Y_{\mu\tau} \bar{\mu}_L H \tau_R - Y_{\tau\mu} \bar{\tau}_L H \mu_R + h.c.,$$

$$\Gamma(H \to \mu^{\mp} \tau^{\pm})_{m_{\mu,\tau} \to 0} = \frac{m_H}{8\pi} (|Y_{\mu\tau}|^2 + |Y_{\tau\mu}|^2)$$

Current and	expected	CEPC	bounds	on the	branching	ratios
-------------	----------	------	--------	--------	-----------	--------

Channels	$\mu^{\mp} \tau^{\pm}$	$e^{\mp}\tau^{\pm}$	$e^{\mp}\mu^{\pm}$
ATLAS bound	1.43%	1.04%	
CMS bound	1.2%	0.69%	$3.5 imes 10^{-4}$
CEPC bound	1.4×10^{-4}	1.6×10^{-4}	1.2×10^{-5}

Current and expected CEPC bounds on the couplings

Channels	$\mu^{\mp}\tau^{\pm}$	$e^{\mp}\tau^{\pm}$	$e^{\mp}\mu^{\pm}$
ATLAS bound	3.5×10^{-3}	2.9×10^{-3}	
CMS bound	3.2×10^{-3}	2.4×10^{-3}	5.4×10^{-4}
CEPC bound	3.4×10^{-4}	3.6×10^{-4}	1.0×10^{-4}

* Constraints to EFT

•
$$Y_{ij} = \frac{v^2}{\sqrt{2}\Lambda^2} C_{ij}, \ C_{ij} \sim 1 \qquad \implies \Lambda \gtrsim 25 \text{ TeV}$$

•
$$Y_{ij} = \frac{v^2}{\sqrt{2}\Lambda^2} C_{ij}, C_{ij} \sim \sqrt{m_i m_j}/v \Longrightarrow \Lambda \gtrsim 0.6 \text{ TeV}$$

(Cheng-Sher Ansatz)

Constraints to RS models with a proper setup

•
$$Y_{ij} = \frac{v^2}{\sqrt{2}\Lambda^2} C_{ij}, \ C_{ij} \sim \max(m_i, m_j)/v \implies M_{\rm KK}(\Lambda) \gtrsim 2.5 \ {\rm TeV}$$

Lepton flavor violation (Z)

$$\mathcal{L}^{Z \to \mu^{\mp} \tau^{\pm}} = g^L_{\mu\tau} \mu_L Z \tau_L + g^R_{\mu\tau} \bar{\mu}_R Z \tau_R + h.c.$$

$$\Gamma(Z \to \mu^{\mp} \tau^{\pm})_{m_{\mu,\tau} \to 0} = \frac{m_Z}{12\pi} (\left|g_{\mu\tau}^L\right|^2 + \left|g_{\mu\tau}^R\right|^2)$$

In estimation of the CEPC bounds (10 billion Z^0 , about 0.2 ab⁻¹, or one year running with $10^{34} \ cm^{-2}s^{-1}$),

- the statistic uncertainties will be smaller than 2%,
- the systematic uncertainties are

assumed to be 5%.

Channels	$\mu^{\mp}\tau^{\pm}$	$e^{\mp}\tau^{\pm}$	$e^{\mp}\mu^{\pm}$
current bound	3.5×10^{-3}	3.2×10^{-3}	0.9×10^{-3}
CEPC bound	1.8×10^{-3}	1.0×10^{-3}	1.6×10^{-4}
CEPC bound	4.9×10^{-4}	4.0×10^{-4}	0.9×10^{-4}
(only stat. unc.)			

Current (PDG2016) vs CEPC (rough estimates) bounds (95% CL) on the coefficients $g \equiv \sqrt{|g_L|^2 + |g_R|^2}$

11/18

Lepton flavor violation (tau)

* There might be chances for CEPC

- B factories: 10⁹ taus;
- CEPC: $10^9 \sim 10^{10}$ taus; < High speed, high reconstruction eff.
- Belle II: 10^{11} taus.

	$\tau \to 3\mu$	$\tau \to \mu \gamma$	$\tau ightarrow \mu \pi^+ \pi^-$	$\tau ightarrow \mu K \bar{K}$	$\tau ightarrow \mu \pi$	$\tau \to \mu \eta^{(\prime)}$
${ m O}_{{ m S},{ m V}}^{4\ell}$	1	_	_	_	_	_
O_D	1	1	✓	✓	_	_
$\mathrm{O}_{\mathrm{V}}^{\mathrm{q}}$	_	_	✓ (I=1)	✓(I=0,1)	_	_
$\mathrm{O}_{\mathrm{S}}^{\mathrm{q}}$	_	_	✓ (I=0)	✓(I=0,1)	_	_
O_{GG}	_	_	1	✓	_	_
$\mathrm{O}_\mathrm{A}^\mathrm{q}$	_	_	_	_	✓ (I=1)	✓ (I=0)
$\mathrm{O}_{\mathrm{P}}^{\mathrm{q}}$	_	_	_	_	✓ (I=1)	✓ (I=0)
$O_{G\widetilde{G}}$	—	—	—	—	—	\checkmark

• for photon induced $\tau \rightarrow \mu$ transitions

$$\mathcal{L}_{\text{eff}}^{(D)} = -\frac{m_{\tau}}{\Lambda^2} \left[\left(C_{DR} \bar{\mu} \sigma^{\mu\nu} P_L \tau + C_{DL} \bar{\mu} \sigma^{\mu\nu} P_R \tau \right) F_{\mu\nu} + h.c. \right],$$

• for gluon induced $\tau \rightarrow \mu$ transitions

$$\mathcal{L}_{\text{eff}}^{(G)} = -\frac{m_{\tau}G_F}{\Lambda^2} \frac{\beta_L}{4\alpha_s} \left[\left(C_{GR}\bar{\mu}P_L\tau + C_{GL}\bar{\mu}P_R\tau \right) G^a_{\rho\sigma} G^{\rho\sigma}_a - \left(C_{\tilde{G}R}\bar{\mu}P_L\tau + C_{\tilde{G}L}\bar{\mu}P_R\tau \right) G^a_{\rho\sigma} \tilde{G}^{\rho\sigma}_a + h.c. \right],$$

• for four-lepton operators with $\tau \rightarrow \mu$ transitions

$$\begin{aligned} \mathcal{L}_{\text{eff}}^{(4\ell)} &= -\frac{1}{\Lambda^2} \left[(C_{SLL}(\bar{\mu}P_L\tau)(\bar{\ell}P_L\ell) + C_{SRR}(\bar{\mu}P_R\tau)(\bar{\ell}P_R\ell) \\ &+ (C_{SLR}(\bar{\mu}P_L\tau)(\bar{\ell}P_R\ell) + C_{SRL}(\bar{\mu}P_R\tau)(\bar{\ell}P_L\ell) \\ &+ (C_{VLL}(\bar{\mu}\gamma^{\mu}P_L\tau)(\bar{\ell}\gamma_{\mu}P_L\ell) + C_{VRR}(\bar{\mu}\gamma^{\mu}P_R\tau)(\bar{\ell}\gamma_{\mu}P_R\ell) \\ &+ (C_{VLR}(\bar{\mu}\gamma^{\mu}P_L\tau)(\bar{\ell}\gamma_{\mu}P_R\ell) + C_{VRL}(\bar{\mu}\gamma^{\mu}P_R\tau)(\bar{\ell}\gamma_{\mu}P_L\ell) + h.c. \right], \end{aligned}$$

• for lepton-quark operators with $\tau \rightarrow \mu$ transitions

$$\begin{split} \mathcal{L}_{\text{eff}}^{(\ell q)} &= -\frac{1}{\Lambda^2} \sum_{q=u,d,s} \left[(C_{VR}^q \bar{\mu} \gamma^{\rho} P_R \tau + C_{VL}^q \bar{\mu} \gamma^{\rho} P_L \tau) \bar{q} \gamma_{\rho} q \right. \\ &+ (C_{AR}^q \bar{\mu} \gamma^{\rho} P_R \tau + C_{AL}^q \bar{\mu} \gamma^{\rho} P_L \tau) \bar{q} \gamma_{\rho} \gamma_5 q \\ &+ m_\tau m_q G_F (C_{SR}^q \bar{\mu} P_L \tau + C_{SL}^q \bar{\mu} P_R \tau) \bar{q} q \\ &+ m_\tau m_q G_F (C_{PR}^q \bar{\mu} P_L \tau + C_{PL}^q \bar{\mu} P_R \tau) \bar{q} \gamma_5 q \\ &+ m_\tau m_q G_F (C_{TR}^q \bar{\mu} \sigma^{\rho\nu} P_L \tau + C_{TL}^q \bar{\mu} \sigma^{\rho\nu} P_R \tau) \bar{q} \sigma_{\rho\nu} q + h.c. \right]. \end{split}$$

13/18

Lepton flavor violation (tau)

* Constrain the tau-mu-gamma WCs by

- the tau to muon gamma decay
- the tau to 3 muon decay

$$\mathcal{L}_{\text{eff}}^{(D)} = -\frac{m_{\tau}}{\Lambda^2} \left[(C_{DR} \bar{\mu} \sigma^{\mu\nu} P_L \tau + C_{DL} \bar{\mu} \sigma^{\mu\nu} P_R \tau) F_{\mu\nu} + h.c. \right]$$
$$\Gamma(\tau^- \to \mu^- \gamma)_{m_{\mu} \to 0} = \frac{m_{\tau}^5}{4\pi \Lambda^4} \left(|C_{DR}|^2 + |C_{DL}|^2 \right)$$
$$\mathcal{B}[\tau \to 3\mu] \approx 1.4 \times 10^{-3} \left(|C_{DR}|^2 + |C_{DL}|^2 \right) \quad (\Lambda = 1 \text{TeV})$$

Channels	$ au o \mu \gamma$	$ au o 3\mu$
current b.d. on \mathcal{B}	4.4×10^{-8}	2.1×10^{-8}
current b.d. on C_D	2.7×10^{-4}	3.9×10^{-3}
CEPC b.d. on \mathcal{B}	1.7×10^{-8}	3.9×10^{-9}
CEPC b.d. on C_D	1.6×10^{-4}	1.7×10^{-3}

- N_{τ} : ~ 10⁹ at B factories, ~ 10¹⁰ at CEPC
- assuming same tau reconstruction efficiency
- statistic uncertainty dominant
- direct constraint is more stringent

Current and CEPC bounds (90% CL) on the coefficient $C_D \equiv \sqrt{|C_{DL}|^2 + |C_{DR}|^2}$

Anomalous dipole moments of tau (2nd example)

- * More sensitive to new physics
 - Effects proportional to fermion mass
- * Weak moments at Z factories

• **PDG values are still given by LEP1 (Z pole)** $\frac{e}{2m_{\tau}}\operatorname{Re}(d_{\tau}^{W}) < 0.50 \times 10^{-17} ecm, \frac{e}{2m_{\tau}}\operatorname{Im}(d_{\tau}^{W}) < 1.1 \times 10^{-17} ecm, (\text{weak dipole moment})$ $\operatorname{Re}(\alpha_{\tau}^{W}) < 1.1 \times 10^{-3}, \operatorname{Im}(\alpha_{\tau}^{W}) < 2.7 \times 10^{-3}, (\text{weak anomalous magnetic dipole moment})$

* EM moments at Z and Higgs factories

• Anomalous magnetic moment

 $-0.052 < g_{\tau} - 2 < 0.058 \text{ (LEP1)} \Rightarrow -0.052 < g_{\tau} - 2 < 0.013 \text{ (LEP2, PDG)}$

• Electric dipole moment (EPM, CP violation)

 $-2.2 < \operatorname{Re}(d_{\tau}) < 4.5 \ (10^{-17} e \mathrm{cm}), -2.5 < \operatorname{Im}(d_{\tau}) < 0.8 \ (10^{-17} e \mathrm{cm}), (Belle, PDG)$ $|d_{\tau}| < 7.2 \times 10^{-20} e \mathrm{cm}, (\operatorname{Super B}, 75 \ \operatorname{ab}^{-1})$

Anomalous dipole moments of tau

* Definition of the weak moments in currents

$$\Gamma_{Z}^{\mu} \ni ie \left[v_{\tau} \gamma^{\mu} - a_{\tau} \gamma^{\mu} \gamma_{5} + i \frac{\alpha_{\tau}^{w}}{2m_{\tau}} \sigma^{\mu\nu} q_{\nu} + i \frac{d_{\tau}^{w}}{2m - \tau} \gamma_{5} \sigma^{\mu\nu} q_{\nu} \right]$$

* Effects of the moments in observables

$$\frac{d\sigma}{d\cos\theta_{\tau}}(s_1, s_2) = R_{00} + \sum_{\mu=1-3} R_{\mu 0} s_1^{\mu} + \sum_{\nu=1-3} R_{0\nu} s_2^{\nu} + \sum_{\mu,\nu=1-3} R_{\mu\nu} s_1^{\mu} s_2^{\nu}$$

For example

$$R_{13} + R_{31} \propto -\frac{\sqrt{s}}{2m_{\tau}} \sin \theta_{\tau} \cos \theta_{\tau} (|a_e|^2 + |v_e|^2) \operatorname{Im}(a_{\tau}^* \alpha_{\tau}^w) - 2 \left(\frac{\sqrt{s}}{2m_{\tau}} - \frac{2m_{\tau}}{\sqrt{s}}\right) \sin \theta_{\tau} \operatorname{Re}(v_e a_e^*) \operatorname{Im}(v_{\tau}^* \alpha_{\tau}^w)$$

Linear dependence.

Anomalous dipole moments of tau

* Naive estimation of the CEPC precision

 $\frac{e}{2m_{\tau}} \text{Re}(d_{\tau}^{w}) < 1.3 \times 10^{-19} \text{ecm}, \frac{e}{2m_{\tau}} \text{Im}(d_{\tau}^{w}) < 2.8 \times 10^{-19} \text{ecm}, \\ \text{Re}(\alpha_{\tau}^{w}) < 2.8 \times 10^{-5}) \text{Im}(\alpha_{\tau}^{w}) < 6.8 \times 10^{-5}) (\text{CEPC}@\text{Z with } 0.2 \text{ ab}^{-1}) \\ \text{An optimised version might come close to the SM} \\ \text{prediction } \alpha_{\tau}^{W} = -(2.10 + 0.61i) \times 10^{-6} \text{ [hep-ph/9411289]} \end{cases}$

* Anomalous moments in the effective theory

Dim-6 operators

$$\mathcal{O}_B = \frac{\alpha'}{2\Lambda^2} \bar{L}_L H \sigma_{\mu\nu} \tau_R B^{\mu\nu},$$
$$\mathcal{O}_W = \frac{\alpha}{2\Lambda^2} \bar{L}_L \frac{\sigma_i}{2} H \sigma_{\mu\nu} \tau_R W_i^{\mu\nu}$$

$$\kappa_{\tau}^{W} = -\left(s_{w}c_{w}\alpha_{\tau}^{w} + s_{w}^{2}\alpha_{\tau}^{\gamma}\right)$$
$$\left(\mathcal{L} \ni \frac{1}{\sqrt{2}}\kappa_{\tau}^{W}\frac{g}{2m_{\tau}}\bar{\nu}_{\tau}\sigma_{\mu\nu}\tau_{R}W_{+}^{\mu\nu} + h.c.\right)$$

Combine W decays to set bounds.

- * CEPC is an ideal machine for measurements of Higgs and Z couplings (and tau relevant observables)
- Precision of the LFV Higgs decay rates will be improved significantly by CEPC, and also the LFV Z decay rates and anomalous weak moments of tau
- * Competition on LFV tau decays and EDM of tau with Belle II

- CEPC is an ideal machine for measurements of Higgs and Z couplings (and tau relevant observables)
- Precision of the LFV Higgs decay rates will be improved significantly by CEPC, and also the LFV Z decay rates and anomalous weak moments of tau
- * Competition on LFV tau decays and EDM of tau with Belle II

Thank you for the attention!