Lepton Collider Simulations With WHIZARD New Developments

Wolfgang Kilian

University of Siegen

CEPC Workshop, IHEP, Beijing November 2017

WHIZARD: Overview

Scope

WHIZARD is a stand-alone program for processes at high-energy colliders: scattering and particle decays

- integrate cross sections and decay widths (perturbative, partonic)
- account for LC beam structure
- amplitude code is generated and executed on the fly
- shower/hadrons via internal or external code
- calculate observables, generate event samples

Universal Monte Carlo for elementary processes at (future lepton) colliders

WHIZARD for LC Studies

SM event samples (DBD) for LC studies \Rightarrow T. BARKLOW

- WHIZARD 1
- Leading-order (QCD and EW), PYTHIA 6 for shower/hadrons
- Various adjustments and add-ons for specific LC issues

Present and future studies: WHIZARD 2

- user interface (scripting language SINDARIN)
- internals redone aimed at NLO and modularity
- CIRCE 2 for detailed beamstrahlung spectra
- current activity: validation, refinements, NLO (QCD and EW)
- HPC parallel evaluation
- Simulations ongoing for CEPC studies and further

Overview

Team

Program exists since 1999

Active authors and developers:

WK (U Siegen), T. OHL (Würzburg), J. REUTER (DESY)

S. BRASS, V. ROTHE, M. SEKULLA, C. SCHWINN, S. SHIM,

F. STAUB, P. STIENEMEIER, M. UTSCH, Z. ZHAO

Current version:

2.6.1 (27. Oct. 2017)

For the User

- Installation centrally or locally on any Linux or Mac (autotools)
 ./configure [options]
 make
 make install
- Look-and-feel like standard Linux/Unix apps
 ./whizard [options] FILE
- User works in directories at his choice, no structure imposed

Programming Languages

- Main program code is written in modern Fortran (F2008).
 Compilers: gfortran, ifort, nagfor
- Glue code uses Make, Makefiles generated on-the-fly
- Algebra is done in OCaml (compiler free for all platforms)
 ⇒ Sub-package OMega
- Some interface to external code in C/C++
- ► Can use precompiled libraries (LHAPDF, HepMC, ...)

Input

- Models precompiled or generated (FeynRules, SARAH, UFO)
- User provides all other information via input file, which is actually a script

Programming language (DSL): Sindarin

Output

- 1. Numbers (cross sections, decay widths, other observables)
- 2. Distributions (plots)
- 3. Event samples in various formats (fixed-order or showered, partonic or hadronic)

Models

MODEL TYPE	with CKM matrix	trivial CKM				
QED with e, μ, τ, γ	-	QED				
QCD with d, u, s, c, b, t, g	-	QCD				
Standard Model	SM_CKM	SM				
SM with anomalous gauge couplings	SM_ac_CKM	SM_ac				
SM with anomalous top couplings	SMtop_CKM	SMtop				
SM for e^+e^- top threshold	-	$SM_tt_threshold$				
SM ext. for VV scattering	—	SSC / SSC2				
SM ext. for unitarity limits in VV	—	SM_ul				
SM with Higgs singlet	—	HSExt				
2HDM	2HDM_CKM	2HDM				
MSSM	MSSM_CKM	MSSM				
MSSM with gravitinos	—	MSSM_Grav				
NMSSM	NMSSM_CKM	NMSSM				
extended SUSY models	—	PS/E/SSM				
Littlest Higgs	—	Littlest				
Littlest Higgs with ungauged $U(1)$	—	Littlest_Eta				
Littlest Higgs with T parity	—	Littlest_Tpar				
Simplest Little Higgs (anomaly-free)	—	Simplest				
Simplest Little Higgs (universal)	—	Simplest_univ				
3-site model	—	Threeshl				
UED	—	UED				
SM with Z'	—	Zprime				
SM with gravitino and photino	—	GravTest				
Augmentable SM template	—	Template				

W. Kilian (U Siegen)

Recent additions to the Model list

- EFT for the SM: complete bosonic D = 6 Lagrangian (Warsaw Basis)
 S. SHIM
- ▶ Beyond EFT: electroweak interactions at high energy ⇒ (Super)LHC/FCC-pp, ILC and CLIC C. FLEPER, M. SEKULLA
- ► UFO File Support (OMega) T. OHL

Collider Setup

Trivial beam structure: just process definition

process foo = "e+", "e-" \Rightarrow "mu+", "mu-"

 \Rightarrow scattering process or decay process

Nontrivial beam structure:

polarization, momentum, angle, beam spectra, structure functions

e^+e^- Collider Beam Structure

- 1. Beamstrahlung = classical beam-beam interaction, collective effect
- 2. ISR = resummed soft/collinear QED bremsstrahlung for initial-state electron-electron interaction
- 3. EPA = $\gamma\gamma$ -induced processes

e⁺e⁻ Collider: Beamstrahlung

Options for handling beamstrahlung (as supported by WHIZARD)

- 1. Beam-energy spread
 - \Rightarrow Gaussian distribution
- 2. CIRCE1: parameterized beam spectrum
 - \Rightarrow Factorized, few parameters in fit
- 3. Beam-events file: use result of GuineaPig simulation directly
 - \Rightarrow Finite number of pre-simulated beam events
- 4. CIRCE2: generator takes binned and interpolated result of detailed GuineaPig simulation
 - \Rightarrow Most precise description

Processes

```
process foobar =
   "e+", "e-" => nue, nuebar, b, bbar, q, qbar, "mu+", "mu-"
```

- Explicit, exclusive
- optionally constrained
- optionally with sum over flavors alias q = u:d:s:c
- optionally sum over subprocesses \Rightarrow inclusive, e.g. decays

Amplitudes: OMega (automatic recursive tree-level amplitudes)

Phase Space and Integration

Phase Space

Multi-Channel: Select dominant singularity structures, parameterize via resonance mappings etc.

(Selection is automatic, heuristics for determining channel importance)

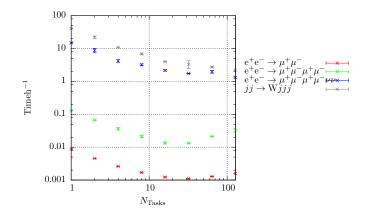
Integration

Twofold adaptive: VAMP

- 1. Each channel gets a weight which is iteratively adapted
- 2. Each channel is binned (VEGAS-like), binning is iteratively adapted Warmup iterations yield integration grid and channel-weight distribution optimized for the particular process, to be used in event generation

Parallel Processing

OpenMP


Make use of multi-core processors: parallel evaluation of helicity configurations

MPI

Make use of multi-processor clusters: parallel sampling of phase space MPI 3.0 asynchronous message passing \Rightarrow New feature S. BRASS

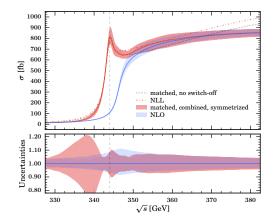
Integration

Speedup (WHIZARD 2.6.0 with MPI)

Speedup by factor > 10 workers Next Step: New Phase-space Construction Algorithm ($\Rightarrow f > 100$)

W. Kilian (U Siegen)

Processes at NLO


NLO QCD: implementation complete

- Interfacing GoSam, OpenLoops, Recola
- FKS subtraction
- $t\bar{t}$ and $t\bar{t}H$ off-shell: detailed study
- currently validating large class of NLO processes

NLO SM: complex mass scheme

- Interfacing GoSam, OpenLoops, Recola
- FKS subtraction / bookkeeping for photons w.i.p.
- ... under construction

Top Threshold, Precisely

Chokoufé, WK, Lindner, Pozzorini, Reuter, Weiss, JHEP 12 (2016) 075

Bach, Chokoufé, Hoang, WK, Reuter, Stahlhofen, Teubner, Weiss, in prep.

W. Kilian (U Siegen)

Top Threshold, Precisely

Achievements:

- Most precise universal description of the $t\bar{t}$ threshold
- Combines NLO QCD (overall) with NLO-NRQCD (threshold region), Coulomb resummation (potential) and NLL-NRQCD threshold improvement (RG)
- Applies to the real final states, e.g.

$$e^+e^-
ightarrow bar{b}\mu^-ar{
u}_\mu e^+
u_e$$

 \Rightarrow Testbed for the precise description and exclusive event generation for any thresholds in e^+e^- , e.g., W^+W^- , ZZ, ...

Events

Event Handlers

WHIZARD uses the twofold-adapted phase space to generate unweighted event samples. Further processing:

- 1. Particle decays (cascades):
 - using WHIZARD's own decay processes (explicit or automatic)
 - full control over polarization transfer (uncorrelated, classical, quantum correlation)
- 2. Photon radiation: exclusive photons from inclusive ISR
- 3. Resonance histories: control shower behavior
- 4. Shower, Hadronization: optionally call PYTHIA (internally)
- 5. POWHEG algorithm for matching NLO events
- 6. Event output: file formats StdHEP, LHEF, HepMC, LCIO, ASCII

Photon Handler

Inclusive ISR description (LL soft, 3rd order collinear) accounts for precise cross section and energy dependence

New Photon Handler in WHIZARD 2.6

Take generated events

- Collinear photons (both beams) are given transverse momentum according to scale-less logarithmic distribution (w/ cutoffs)
- Both beams handled: exact energy-momentum conservation
- Common scheme for ISR (e^+e^- process) and EPA ($\gamma\gamma$ process)
- \Rightarrow extend to multiple photons matched with NLO SM

Resonances and Parton Shower

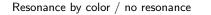
Current standard for simulation with WHIZARD 2

PYTHIA 6 parton shower (internal). Ongoing validation by LC generator group.

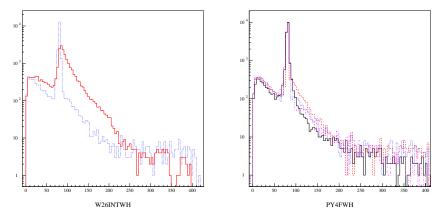
Important LC processes: $(WW, ZZ, ZH \rightarrow)4f$, $(WWZ, ZZZ, WWH, \ldots \rightarrow)6f$, etc.: contain resonances PYTHIA 6 modes:

- 1. Default: local interaction, shower starts at process energy scale, invariant masses reshuffled
- 2. Resonance: nonlocal interaction, shower starts at resonance mass, invariant masses fixed

Interplay of resonant/nonresonant background?


New solution for WHIZARD 2 (WIP)

Generate event sample as usual, no change to cross section (LO).


- 1. Determine possible resonance histories for each single event
- 2. For all applicable histories, compute factorized matrix elements *in addition to* complete matrix element
- 3. Use relative ME values to determine probabilities for histories, including background (remainder)
- 4. Select one of the applicable histories to modify the event record

Events

Resonance / Background in Event History

Resonance by ME, varied cutoff

Plots by M. Berggren (WIP)

This is to be applied to matched NLO event generation in the presence of multiple resonances.

W. Kilian (U Siegen)

WHIZARD

```
Plots, observables
```

```
histogram ptplot (0 GeV, 100 GeV, 5 GeV)
```

```
simulate (twojets) {
  n_events = 10000
  analysis =
    record ptplot (eval Pt [q])
}
compile_analysis
```

More Analysis

SINDARIN

- unified syntax for cuts, observables, histograms, plots embedded in steering code
- Can work on own event samples or on event files
- Resulting plots use MetaPost \Rightarrow integrates seamlessly with $\[Mathebaar]$
- FastJet for jet algorithms in cuts/analysis

Also in Sindarin:

- Logicals, strings, integers, reals, complex
- If-then-else branching
- Parameter scans/loops (also nested)
- ... more to come.

Events

WHIZARD GUI

Whizard GUI	Home	Docs +	Examples +													
Wh	nizai	rd gui	$ \mathbf{A} $													

Basic Settings Integration Simulation	on Cuts Scan NLO Beams Q Preview file	Log Plots
ne, Last Blast T	Integrate NLO CMS energy 500 Number of iterations 5 Number of Calls per tieration 10000	<pre>Ream Structure: imp particles] Ream data (collision:</pre>
New process is added.	×	Integrator: 10000 initial calls, 20 bins, stratified = T Integrator: VMP It Calls Integral(fb) Error(fb) Err(%) Acc Eff(%) Chi2 N(It)
Seved Succesfully.	×	VWMP: parameter mismatch, discarding grid file 'proc_1ml.vg' 1 8192 5.48372896-82 4.965-92 0.81 6.01* 6.02* 6 2 8192 5.46487286-82 4.46-92 0.81 6.01* 6.02* 6 4 8192 5.54649216-82 4.46-92 0.81 6.01* 75.55 5 9192 5.4583286-82 4.569-92 0.81 6.01* 75.55 5 9192 5.4583286-82 5.569-92 5 9192 5.4583286-82 5.569 5 9192 5.5583286-82 5.569 5 9192 5.558286-82 5.568 5 9192 5.558286-82 5.568 5 9192 5.558286-82 5.5682886-82 5.56886-82 5.568886-82 5.5788886-82 5.5788886-82 5.5788886-82 5.5788886-82 5.5788886-82 5.5788
		5 40960 5.4840584E+02 1.99E-02 0.00 0.01 62.32 1.76 5

Summary

Summary: WHIZARD for CEPC Physics

- Universal multi-particle event generator (SM and beyond)
- Accurate e^+e^- beam description
- Parallel computation using MPI and OpenMP
- ► e⁺e⁻ precision studies bear challenges that are not addressed by conventional automated multi-particle simulations

Work items:

- SM NLO is as important as QCD NLO, higher orders
- Accurate description of (almost) collinear photon radiation
- Precise shape and normalization of thresholds and resonances
- Electroweak resonances as sources of QCD radiation

http://whizard.hepforge.org