R&D of CEPC HCAL

Boxiang Yu

On behalf of CEPC Calorimeter working Group

2017,7 Nov., Beijing

Outline

—Preliminary design of CEPC-Detector ;

—The options of CEPC-HCAL;

—The progress of three options of HCAL

- SDHCAL based on RPC;
- SDHCAL based on GEM/THGEM;
- AHCAL based on scintillator;

-Summary

Requirements of CEPC Calorimeter

- Jet energy resolution (ECAL combined with HCAL and tracker): $\sigma_E/E \approx (3\% 4\%)$
- Detailed information of showers
- High granularity, Compact showers(small radiation length X₀, and small Moliere radius R_M), Minimum dead materials

LC PFlow Calorimetry options

* Various options for high granularity sampling calorimeters...

SDHCAL Prototype

- Total Size:1.0x1.0x1.3m³
- Total Layers: 48
- Total Channel(pads):440000
- Power consumption:10 microW/channel for ILC mode. 100 times for CEPC

The first technological prototype among a family of prototypes of high-granularity calorimeters

Developed by the CALICE collaboration

Structure of per layer

ASIC HARDROC(64 channel) three-threshold (Semi-digital) 110fC,5pC,15pC

Analysis of beam test

selections

Optimization of SDHCAL Layers

(0. $12\lambda_I$, 1. $14X_0$)

Stainless steel Absorber(15mm)

Stainless steel wall(2.5mm) GRPC(6mm $\approx 0 \lambda_I, X_0$) Stainless steel wall(2.5mm)

 → SDHCAL has 48 layers which aims for ILC Detector
 - 6mm RPC+20mm absorber

➔ Optimization no. of layers for CEPC at 240GeV

→40-layer SDHCAL yields decent energy resolution.

Also apply BDT to improve pion/e/mu identification, see Haijun Yang's talk

Advantages:
1. assembling process is easy and fast
2. no dead area inside the active area
3. uniform gas flow
4. detachable

Typical parameters Cu: t = 5μm Kapton: T = 50μm Diameter: d = 60μm D = 80μm pitch: 140μm

• Schematic of the System

 \square Readout Board: GEM detector Readout composed by 900 $1cm^2$ pads.

- MICROROC Test Board: Mounted 4 Microroc ASICs, controlled by daisy chain.
- □ DIF Board: Microroc control, test and data acquisition

Readout ASIC

Readout ASIC	Channels	Dynamic Range	Threshold	Consumption
GASTONE	64	200fC	Single	2.4mW/ch
VFAT2	128	18.5fC	Single	1.5mW/ch
DIRAC	64	200fC for MPGD	Multiple	1mW/ch, 10µW/ch(ILC)
DCAL	64	20fC~200fC	Single	
HARDROC2	64	10fC~10pC	Multiple	$1.42 \text{mW/ch}, 10 \mu \text{W/ch}(\text{ILC})$
MICROROC	64	1fC~500fC	Multiple	335µW/ch, 10µW/ch (ILC)

Considered the multi-thresholds readout, dynamic range and power consumption, MICROROC is an appropriate readout ASIC

MICROROC Parameters

□ Thickness: 1.4mm

- □ 64 Channels
- □ 3 threshold per channel
- □ 128 hit storage depth
- Minimum distinguishable charge:2fC

Test of MICROROC

• Calibration curve

Uniform
 between 64
 channels

Minimum distinguishable charge: 2fC

Noise Test

Structure of GEM Detector

Test system

Uniformity results

Pad Size: 1cmx1cm

uniform_30cmx30cm_GEM

Crosstalk Test result

Utilizing Cosmic-Ray as Test Source

 the ratio of nearby pad response is 1.54%

Preliminary research on THGEM-DHCAL

- three structure can be selected;
 - Double THGEM;
 - Single-THGEM;
 - WELL-THGEM;
- WELL-THGEM is the-best selection.
 - thinner, high gain, lower discharge

The thickness of WELL-THGEM<6mm

Gain result of 20cmX20cm WELL-THGEM

- Integrate ASIC to the back-end of Detector
- Design and assemble 50cm × 100cm GEM detector with 3mm drift gap、1mm transfer gap and 1mm induction gap.
- Test performances of the $50 \text{cm} \times 100 \text{cm}$ GEM detector

The progress of scintillator AHCAL

- Analog hadron calorimeter based on scintillator till (30×30×3 mm³) with a SiPM
 - The absorber: 2cm Stainless steel;
 - Detector cell size: $3 \text{cm} \times 3 \text{cm}$ (baseline), $4 \text{cm} \times 4 \text{cm}$, $5 \text{cm} \times 5 \text{cm}$;
 - Readout chip: ASIC SPIROC2E
 - The sensitive detector : Scintillator(PS or inorganic scintillator);
 - 40 sensitive layers, total readout channel

≈5 Million (3cm× 3cm)

≈2.8 Million (4cm× 4cm)

Detector Cells Research

- Via mechanical drilling and polishing, a dome-shaped cavity in the center of plastic scintillator was made

- The sizes of $30 \times 30 \times 3$ mm³, $30 \times 30 \times 2$ mm³, $40 \times 40 \times 3$ mm³and
- $50 \times 50 \times 3$ mm³ were made.
- SiPM or MPPC(surface-mounted)
- Scintillator(BC408) were wrapped by ESR foil

Readout electronics

Electronic readout board is Hamamatsu C12332-01

Temperature compensation keep amplitude of the SiPM stable

S12571-025P parameter : Sensitive area :1 \times 1mm² Pixel size :25 \times 25µm² Pixel number:1600 Gain: 5.15E+05 S13360-1325PE parameter : Sensitive area :1.3 \times 1.3 mm² Pixel size :25 \times 25 μ m² Pixel number:2668 Gain: 1.1E+06

Uniformity measurement

- Uniformity scans (MPPC: S12571-025P and)
- Scintillator tile under study can be moved in a step size of 5×5 mm²
- 30x30x3mm³, 30x30x2mm³and 50x50x3mm³ were measured .
- The mean response can reach 100%,94% within 10% deviation from the mean value, respectively.

Cosmic-ray measurement

- 30x30x3mm³, 30x30x2mm³, 40x40x3mm³,50x50x3mm³
 plastic scintillator were tested
- MPPC type: S12571-025p and S13360- 1325PE

The result of AHCAL detector cell

Table 1 Cosmic-ray measurement results of detector cells with different sizes+						
No.43	Detector Cell.	MPPC Type	Reflective Foil Type	$Mean N_{p.e^{\mathcal{A}^2}}$	Polishing Methods+	
1₽	$30 \times 30 \times 3 mm^{3} $	S12571-025₽₽	ESR₽	31.39±0.65+	Ultra Precise Polishing	
24	$30 \times 30 \times 3 mm^{3} r$	S12571-025₽₽	ESR₽	22.55±0.7₽	Precise Polishing. ²	
3₽	$30 \times 30 \times 3 mm^{3} r$	S12571-025₽₽	ESR₽	18.92±0.3943	Rough Polishing.	
4₽	$30 \times 30 \times 3 mm^{3}$	S12571-025₽₽	TYVEK.	13.63±0.33¢	Precise Polishing₽	
5₽	$40{\times}40{\times}3mm^{3}$	S12571-025₽₽	ESR₽	14.89±0.73₽	Precise Polishing₽	
6↩	50×50×3mm ³ ,	S12571-025₽₽	ESR₽	9.87±0.43₽	Precise Polishing.	
7₽	$30 \times 30 \times 2 \text{mm}^{3}$	S13360-1325PE&	ESR₄ ^J	33.89±0.49¢	Precise Polishing [,]	

- The detector cell: $30 \times 30 \times 3mm^3$, $40 \times 40 \times 3mm^3$, $50 \times 50 \times 3mm^3$ and $30 \times 30 \times 2mm^2$ was tested;
- MIPs response of them is meet the requirement of HCAL;
- Which kind detector cell will be used depend on the simulation result;

Chinese EQR SiPMs (Developed by Beijing Normal University)

- Chinese **Beijing Normal University** (BNU) has developed silicon photomultiplier (SiPM) technologies with epitaxial quenching resistors (EQR).
- NDL EQR-SiPM is easy to implement owning to its unique structure featuring intrinsic continuous and uniform cap resistor layer, thus reducing the cost of the fabrication.

Chinese EQR-SiPM performance

	NDL	SiPM		
Effective Active	11-3030 B-S	22-1414 B-S		
Area	3.0×3.0 mm ²	1.4×1.4 mm² (2×2 Array)	 Chinese SiPM already can work with some good 	
Effective Pitch	10 µm	10 µm	performance	
Micro-cell Number	90000	19600		
Fill Factor	40%	40%	• Some performance need	
Breakdown Voltage (V _b)	23.7±0.1V	23.7±0.1V	more improvements	
Measurement Overvoltage (V)	3.3	3.3	Higher dynamic range	
Peak PDE	27%@420nm	35%@420nm	Higher fill-factor	
Max. Dark Count (kcps)	< 7000	<1500	High Dark count rate	
Gain	2×10 ⁵	2×10 ⁵		
Temp. Coef. For V _b	17mV/°C	17mV/°C	A little low Gain	

CEPC-AHCAL Next step

- ASCI chip readout research;
- Test Chinese (GNKD) plastic scintillator;
- Test the Chinese EQR-SiPM;
- Scintillator mega tiles test;

ASIC chip Spiroc2E

Mega tiles

Summary and next

- -CEPC-HCAL have got some progress;
- —Now we have three options, RPC-SDHCAL, GEM-DHCAL, Scint-AHCAL;
- —The CEPC-HCAL-CDR is on way;
- —Apply new funding for HCAL prototype;

Welcome to join us!

Thanks for your attention!

Backup!

Chinese plastic scintillator test

- 2 tiles of Chinese scintillators were tested;
- Sr-90 results: 29.86 p.e. & 30.8 p.e;
- The result of Bicron BC408 tiles is 26 p.e.;

NDL EQR-SiPM VS Hamamatsu MPPC

	NDL	SiPM	Hamamatsu MPPC		
Effective Active	11-3030 B-S	22-1414 B-S	S13360-3025PE	S13360-1325PE	
Area	3.0×3.0 mm ²	1.4×1.4 mm² (2×2 Array)	3.0×3.0 mm ²	1.3×1.3 mm ²	
Effective Pitch	10 μm	1 0 μm	25 μm	25µm	
Micro-cell Number	90000	19600	14400	2668	
Fill Factor	40%	40%	47%	47%	
Breakdown Voltage (V _b)	23.7±0.1V	23.7±0.1V	53±5V	$53\pm5V$	
Measurement Overvoltage (V)	3.3	3.3	5	5	
Peak PDE	27%@420nm	35%@420nm	25%@450nm	25%@450nm	
Max. Dark Count (kcps)	< 7000	<1500	1200	210	
Gain	2×10 ⁵	2×10 ⁵	7.0×10 ⁵	7.0×10 ⁵	
Temp. Coef. For V _b	17mV/°C	17mV/°C	54mV/°C	54mV/°C	