Detector & Physics Summary & Plan

Manqi Ruan

CEPC: Higgs + Z factory

- Higgs:
 - Distinguish the Higgs signal from the SM background
 - Distinguish the generation/decay mode of the Higgs
 - High efficiency/purity identification and precise measurement of Core Physics Objects (Lepton, Photon, Tau, JET & MET)
- Z:
 - Same requirement for Core Physics Objects
 - Particle ID, especially Kaon identification is appreciated

Systematic control

- High Stability, High homogeneity
- Calibration
- Alignments
- Luminosity monitoring

Two classes Concepts

- PFA Oriented Concepts
 - TPC + High Granularity Calorimeter
 - Silicon tracking + High Granularity Calorimeter
- Low Magnet Field Detector Concept
 - Wire Chamber + Dual Readout Calorimeter

PFA Oriented Reconstruction

Example Working Points & Performance for Object identification (Preliminary)

	Efficiency	Purity	Mis-id Probability from Main Background
Leptons	99.5 - 99.9%	99.5 – 99.9% at Higgs Runs(c.m.s = 240 GeV), Energy dependent	$\mathbb{P}(\pi^{\pm} \rightarrow leptons) < 1\%$
Photons*	99.3 - 99.9%	99.5 – 99.9% at Higgs Runs Energy Dependent	$P(\text{Neutron} \rightarrow \gamma) = 1-5\%$
Charged Kaons**	86 - 99%	90 – 99% at Z pole Runs (c.m.s = 91.2GeV, Track Momentum 2- 20 GeV)	$\mathrm{P}(\pi^{\pm} \rightarrow K^{\pm}) = 0.3 - 1.1\%$
b-jets	80%	90% at Z pole runs $(Z \rightarrow qq)$	$P(uds \rightarrow b) = 1\%$ $P(c \rightarrow b) = 10\%$
c-jets	60%	60% at Z pole runs	P(uds → c) = 5% P(b → c) = 15%

Photon*: only considering neutron background and using ToF information Kaon**: Performance Highly depend on DAQ & Geometry

Feasibility & Optimized Parameters

Feasibility analysis: TPC and Passive Cooling Calorimeter is valid for CEPC

	CEPC_v1 (~ ILD)	Optimized (Preliminary)	Comments
Track Radius	1.8 m	>= 1.8 m	Requested by Br(H->di muon) measurement
B Field	3.5 T	3 T	Requested by MDI
ToF	-	50 ps	Requested by pi-Kaon separation at Z pole
ECAL Thickness	84 mm	84(90) mm	84 mm is optimized on Br(H->di photon) at 250 GeV; 90mm for bhabha event at 350 GeV
ECAL Cell Size	5 mm	10 – 20 mm	Passive cooling request ~ 20 mm. 10 mm should be highly appreciated for EW measurements – need further evaluation
ECAL NLayer	30	20 – 30	Depends on the Silicon Sensor thickness
HCAL Thickness	1.3 m	1 m	-
HCAL NLayer	48	40	Optimized on Higgs event at 250 GeV; Margin might be reserved for 350 GeV.

High light 1: Progresses of HGC

10:30 - 12:30	Detec	Detector & Physics IV (Calorimeter): Parallel Session III			
	Conver	ners: Dr. Jianbei Liu (University of Science and Technology of China), Prof. imad laktineh (IPNL), Prof. Roberto Ferrari (INFN)			
	10:30	CEPC ECAL R&D Status 20'			
		Speaker: Dr. Yunlong Zhang (University of Science and Technology of China)			
		Material: Slides			
	10:50	CEPC HCAL R&D Status 20'			
		Speaker: Dr. Boxiang Yu (高能所)			
		Material: Slides 🔁			
	11:10	CALICE SiW status 20'			
		Speaker: Prof. Jean-Claude Brient (LLR)			
		Material: Slides 📩			
	11:30	CALICE SDHCAL status 20'			
		Speakers: Prof. Haijun Yang (Shanghai Jiao Tong University), Prof. Haijun Yang (Shanghai Jiao Tong University), Haijun Yang (Shanghai Jiao Tong University)			
		Material: Slides 🗐 🔂			
	17:50	CMS experience with HGCAL 20'			
		Speaker: Alberto Belloni (University of Maryland)			
		Material: Slides 🔁			

HGC – Si-W ECAL

- Si-W ECAL
 - Good Separation
 - High S/N Ratio
 - Timing information
 - Cooling has been addressed
- 8/11/2017
 - Usage at CMS, ATLAS Upgrade, CALICE

High light 2: Pid & TPC Studies

Condition		#σ(π-К / К-р)	Efficiency	Purity
MCTruth	dE/dx only	3.9 / 1.5	88%	86%
	+ TOF	4.0 / 3.2	98%	98%
20% degraded	dE/dx only	3.1 / 1.2	81%	79%
	+ TOF	3.3 / 3.0	96%	96%
50% degraded	dE/dx only	2.4 / 0.9	68%	68%
	+ TOF	2.8 / 2.9	91%	94%

• S. Prell, et.al: Simulation indicate decent Kaon id using TPC dEdx + ECAL as ToF (50 ps)

• H. Qi: Preliminary LCTPC test beam result

dEdx ~ 4.7%, agrees with MC Simulation (3.4 - 5.1%)

- Progresses of IBF & Laser monitoring
 - IBF controlled to 0.1%, ensure the charge distortion << Hit resolution

High light 3: Tame of Tau & Jets

D. YU, Z.ZHANG et. al (http://indico.ihep.ac.cn/event/6618/session/22/contribution/142/material/slides/0.pdf) Full Sim Analysis at H->tautau: high efficiency tau-finding at different environments

8/11/2017 P. LAI et. al, (http://indico.ihep.ac.cn/event/6618/session/19/contribution/135/material/slides/0.pdf) Events with jets: Clear separation of Bosons, Impact of Jet Clustering Evaluated, JER 3-6%

Silicon Tracking + HGC

Full Silicon Tracker in 3D

Figure: CEPCSIDV6 (left) and SIDB(right).

W Yao:

Partly optimized geometry Fully implemented & Validated; Reconstruction works well for single/well isolated particles; Track reco. Efficiency slightly degraded for tracks in Jets

CLIC Inspired FCC-ee detector

Same concept, different parameters; MDI; Properly functional Reconstruction

8/11/2017

O. Viazlo:

http://indico.ihep.ac.cn/event/6618/session/4/contribution/47/material/slides/0.pdf

Low magnet field detector concept

09:00 An ultra-light drift chamber with particle identification capabilities 30' Speaker: Prof. Franco Grancagnolo Material: Slides 📆

Hardware prototyping & test beam

Implemented into Simulation

Both Wire Chamber & Dual readout Calorimeter have been implemented;

Need Validation, Digitization & Dedicated Analysis to Study the performance at jet and Physics event level

Common topics

- Beam energy monitoring
 - 1 MeV accuracy is conditionally accessible (Very demanding) Needs more careful study
- Deep learning in Flavor Tagging
 - Significant Impact observed
 - At Z pole: B-tagging purity improved from 89%->93% (eff = 80%)
 - At Higgs Sample: C-tagging purity improved by ~50% (eff = 60%)
 - Much to be explore
- Computing:
 - Appreciation to Dirac, IHEPCC, BES, QMUL, IPAS...
 - Short in Computing Power: Only covers 1/10 of SM Background in 1 geometry set
- DAQ By giving some of the present examples, I am trying to give a hint on how the future DAQ system would move, but it is hard to predict new technology more than 10 year ahead
 - We need our own thoughts like xTCA
 - We need development from Industry
 New FPGA, high IO
 - Powerful CPUs, PPUs
 - 8/11/2017 We should not wait, but keep working/improving

Material:

Slides 📆

16

VTX & Silicon Sensors

To Machine

16:30 - 18:15 MDI (joint detector and accelerator) I: Parallel Session V & PMT Conveners: Dr. Suen Hou (SINICA), Prof. Michael Sullivan (SLAC National Accelerator Location: C305 Electron 16:30 Introduction (interaction region, magnets, etc.) 25' beam Speaker: Mr. Chenghui Yu (Institute of High Energy Physics) Material: Slides 🔛 16:55 **Radiation backgrounds at CEPC 20'** Speaker: Dr. Hongbo ZHU (IHEP) Material: Slides 🗾 USB MVD USB 17:15 Telescope MDI at SuperKEKB 20' Speaker: Mr. Peter Lewis (Hawaii U.) Material: Slides 📆 Trigger USB Logic Unit DAO PC 17:35 **Overview of LC FCAL 20'** AD9522-1 PLL LKOUT Speaker: Prof. Ivanka Bozovic (VINCA) Revolution Cloc USB CLKD Evaluation Board Material: Slides 💏 17:55 LumiCal at CEPC 20' Speaker: Dr. Suen Hou (SINICA) 1. Luminosity of Bhabha counting is demanded to $\delta L/L \sim 0.1\%$ Material: Slides 📆 A "floating LumiCal" has unknown systematics on r_{inner}

MDI: Challenges everywhere!

wtih Si Strip to reach r_{inner} to resolution <10 μm

Telescope planes

Scintillators

& PMT

By adding electron tracking to calibrate "mean of r_{inner} " to $1 \ \mu m \rightarrow to reach \ \delta L/L \sim 0.01\%$

X-Y Table

Scintillators

Detector module

Converter

DESY II

To theory

- 16:30 18:15 Detector & Physics (joint with theory) VI: Parallel Session V Conveners: Patrizia Azzi (INFN-PD), Prof. Yaquan FANG (高能所) Location: B326
 - 16:30 HI-LHC & challenge for CEPC Higgs 20' Speaker: Nicola De Filippis (Politecnico and INFN Bari) Material: Slides
 - 16:50 HL-LHC & challenge for CEPC EWK 20' Speaker: Prof. Paolo Azzurri (INFN Pisa) Material: Slides
 - 17:10 Study of the CEPC Higgs decaying into two photons 20' Speaker: Ms. Zhenyu Zhang (WHU) Material: Slides
 - 17:30 Combination of CEPC Higgs precision measurement 20' Speaker: Mr. Kaili Zhang (IHEP) Material: Slides
 - 17:50 Long lived particles 20' Speaker: Prof. James Beacham (OSU) Material: Slides

- 14:00 16:00 Detector & Physics V (Simulation): Parallel Session IV Conveners: Dr. Sasha Glazov (DESY), Mr. Manqi Ruan (IHEP) Location: B326
 - 14:00 Fast Simulation for CEPC 20' Speaker: Dr. Gang LI (EPD, IHEP, CAS) Material: Slides

- CEPC would deliver game changing precision for EW parameters
 - possible x 10-100 improvement factors to LEP1 & 2 precision
 - W mass and width to ~1 MeV (make a visit to the threshold if possible)
 - Z pole physics also very worth to be exploited

8/11/2017

Summary

- Lots of interesting talks
 - Results + Ideas...
- To do:
 - Making solid conceptual design: a coherent picture that links machine, theory & detector;
 - Requirement, Performance & Hardware design
- To make an efficient collaboration
 - Dedicated manpower & long term programs (PostDoc + Visiting Scholars + Position)
 - Common efforts to the future:
 - Physics potential studies
 - Detector hardware & technologies
 - Common DAQ
 - Common software/algorithm, Artificial intelligence
- Apology for these missing points/items & my personal bias... 8/11/2017

Back up

Optimization Benchmarks

Science at CEPC-SPPC

- Tunnel ~ 100 km
- CEPC (90 250 GeV)
 - Higgs factory: 1M Higgs boson
 - Absolute measurements of Higgs boson width and couplings
 - Searching for exotic Higgs decay modes (New Physics)
 - Z & W factory: 10B Z boson Medium Energy Booster(4.5Km)

Booster(50Km

- Precision test of the SM Low Energy
 - Low Energy Booster(0.4Km)

IP₂

e+ e- Linac (240m)

- IP4
- Rare decay
- Flavor factory: b, c, tau and QCD studies
- SPPC (~ 100 TeV)
 - Direct search for new physics
 - Complementary Higgs measurements to CEPC g(HHH), g(Htt)
- Heavy ion, e-p collision... 8/11/2017

Complementary

IP3