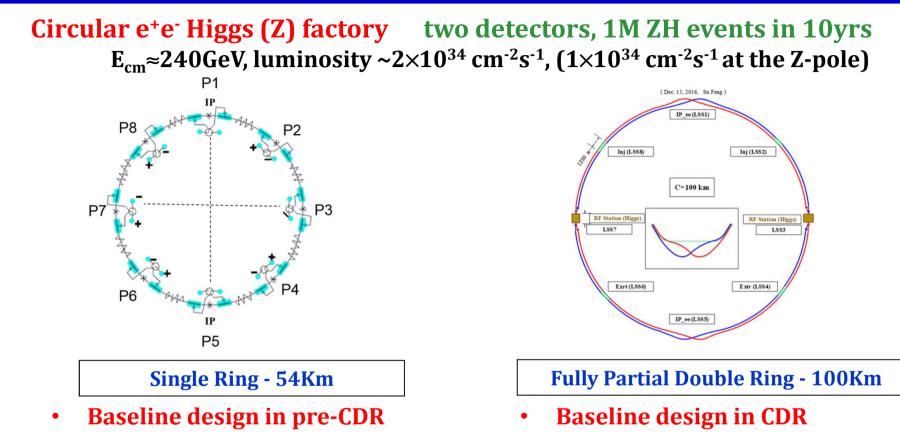


# Status of CEPC vertex detector R&D in China

### Qun Ouyang

### On behalf of the CEPC VTX study group


Nov. 7<sup>th</sup>, 2017 Beijing

International Workshop on High Energy Circular Electron Positron Collider

## **Outline**:

- Requirements
- R&D activities in the past three years
- Future plan and outlook
- Summary

### CEPC and Its Beam Timing



- Bunch number 50
- Colliding every 3.6µs, continuously
   →Power pulsing not applicable
- Bunch number 286 (half ring)
- Bunch spacing 0.537µs

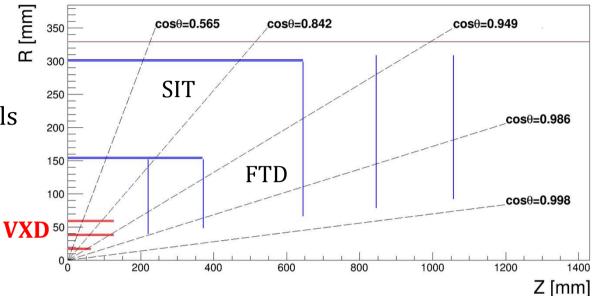
**Reference: CEPC Accelerator CDR - Status, J. Gao, Workshop plenary talk** 

### **Detector Requirements**

- Efficient tagging of heavy quarks (b/c) and  $\tau$  leptons
  - $\longrightarrow$  impact parameter resolution

$$\sigma_{r\phi} = 5 \oplus \frac{10}{p(GeV)\sin^{3/2}\theta} (\mu m)$$

- Detector system requirements:
  - $-\sigma_{SP}$  near the IP:  $<3 \mu m$
  - material budget:  $\leq 0.15\% X_0/layer \longrightarrow$
  - first layer located at a radius:  $\sim 1.6$  cm
  - pixel occupancy:  $\leq 1\%$


- $\sim 16 \mu m$  pixel pitch
  - power consumption < 50mW/cm<sup>2</sup>, if air cooling used
- $\sim \mu s$  level readout

#### **Target:** fine pitch, low power, fast pixel sensor + light structure

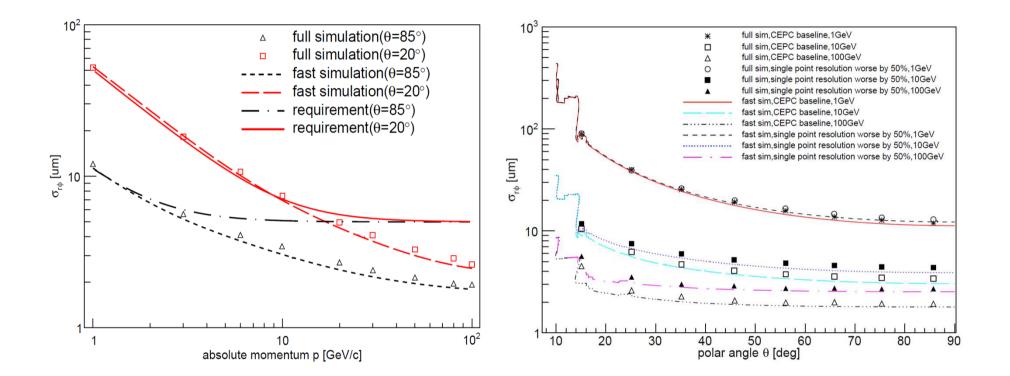
### **Baseline Detector Layout**

#### <u>VXD</u>:

- ILD like layout
- 3 layers of double-sided pixels
- $\sigma_{SP}$ =2.8µm, inner most layer
- Polar angle  $\theta \sim 15$  degrees



#### **VXD** parameters


|         | R (mm) | z  (mm) | $ \cos \theta $ | $\sigma_{sp}(\mu m)$ | Readout time (µs) |
|---------|--------|---------|-----------------|----------------------|-------------------|
| Layer 1 | 16     | 62.5    | 0.97            | 2.8                  | 20                |
| Layer 2 | 18     | 62.5    | 0.96            | 6                    | 1-10              |
| Layer 3 | 37     | 125.0   | 0.96            | 4                    | 20                |
| Layer 4 | 39     | 125.0   | 0.95            | 4                    | 20                |
| Layer 5 | 58     | 125.0   | 0.91            | 4                    | 20                |
| Layer 6 | 60     | 125.0   | 0.90            | 4                    | 20                |

Nov.7 $^{\text{th}}$  , 2017

Status of CEPC vertex detector R&D in China

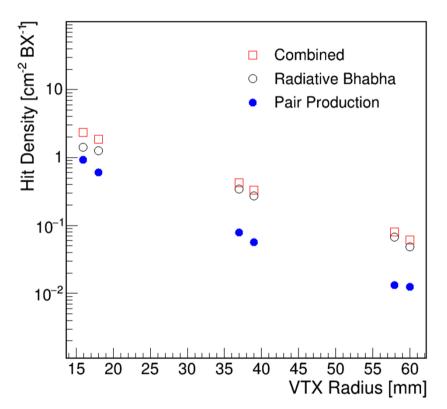
### **Performance Studies**

#### Z.Wu, C.Fu, B. Liu, et al (IHEP)



#### **Result:** could meet the physics requirement with the baseline design

Nov.7 $^{th}$  , 2017


### **Beam-Induced Backgrounds**

H. Zhu, et al (MDI group)

- Various sources of backgrounds studied with Monte Carlo simulation :
  - Beamstrahlung
  - Lost Particles
  - Synchrotron Radiation
- Hit density ~2.5 hit cm<sup>-2</sup> BX<sup>-1</sup>

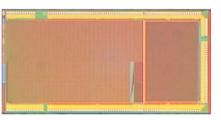
   → detector occupancy: <1%</li>
   by estimating tolerable hit density, with a safety factor of 10 included
- Radiation level
  - TID ~2.5 MRad / year
  - NIEL ~ $10^{12}$  1MeV n<sub>eq</sub> / (cm<sup>2</sup> year)

(safety factor: 10)



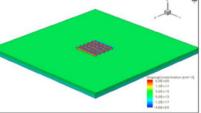
# **R&D** activities

#### Initial sensor R&D targeting on


- Pixel single point resolution <3-  $5\mu m$
- Power consumption at the current level <100mW/cm<sup>2</sup>
- *Integration time 10-100μs*
- CMOS pixel sensor (CPS)-funded by MOST and IHEP TowerJazz CIS 0.18 μm process
- SOI pixel sensor- funded by NSFC LAPIS 0.2 μm process

### CMOS Pixel Sensor R&D Activities

- Sensor design & TCAD simulation Y.Zhang, et al, NIMA 831(2016)99-104
  - Different sensor diode geometries, epitaxial-layer properties and radiation damage
  - **First submission in Nov. 2015** Y. Zhang, Y.Zhou, et al

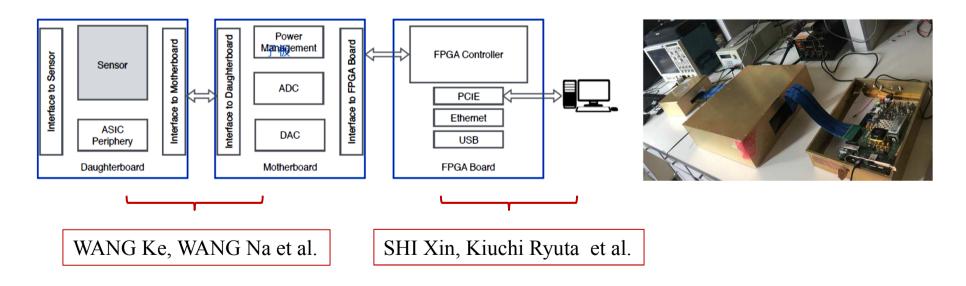

- Exploratory prototype, analog pixel, rolling shutter readout mode
- Sensor optimization and radiation tolerance study
- sensing node AC-coupled to increase biased voltage
- Second submission in May 2017
  - Tow prototypes with digital pixels (in-pixel discriminator)
  - Tow different readout schemes: rolling shutter & asynchronous

#### **Design goals**

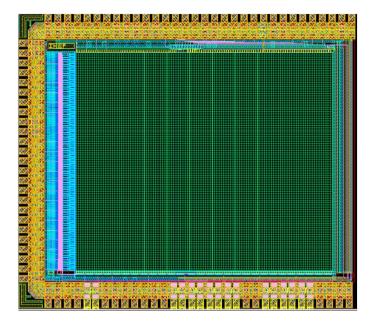


chip returned from

the foundry

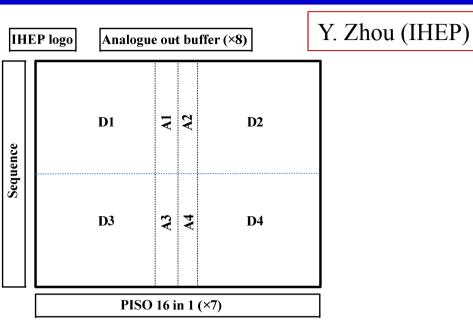



### 1<sup>st</sup> CPS Prototype Characterization


#### Test system being developed

Prototype analog readout  $\rightarrow$  Daughter-board  $\rightarrow$  ADC sampling by mother-board

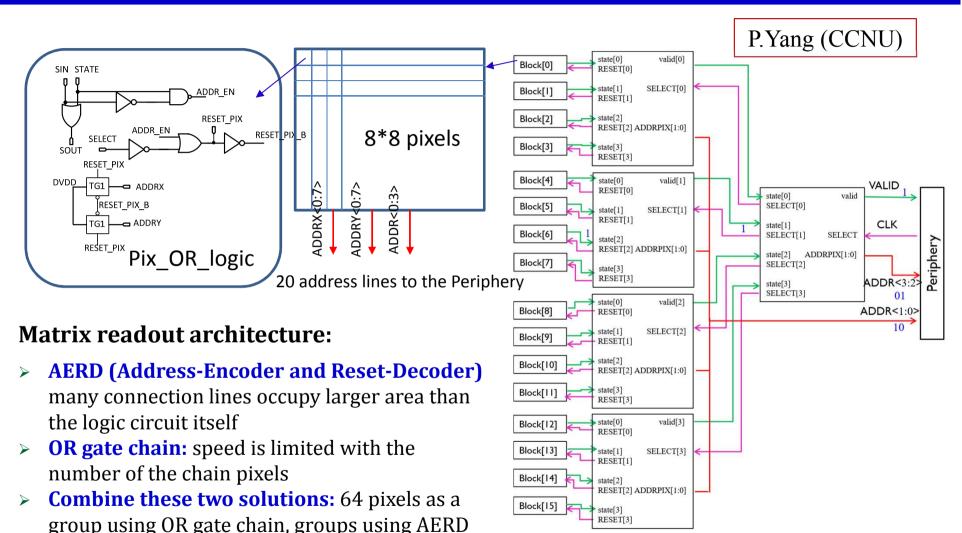
- Two versions of daughter-board designed and fabricated
- Single analog readout channel verified with oscilloscope
- ADC debugging in progress




### 2<sup>nd</sup> CPS Submission: Rolling-shutter Mode



#### Two different pixel versions:


- Pixel size:  $22\mu m \times 22\mu m$  $\rightarrow 65\%$  of ASTRAL chip
- Same amount of transistors;
- Offset cancellation technique;
- Version 2 has higher signal gain, but suffers "more" from "Latch" input voltage distortion.

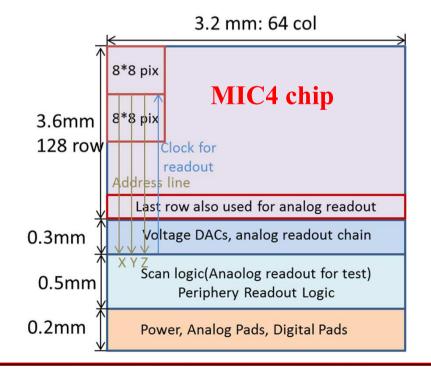


#### **Chip features:**

- 3×3.3 mm<sup>2</sup>
- 96 $\times$ 112 pixels with 8 sub-matrix
- Processing speed: 11.2µs/frame with 100 ns/row
- Output data speed: 160 MHz
- Power: 3.7μA/pixel (14.4 mW/cm<sup>2</sup> @pixel matrix)

### 2<sup>nd</sup> CPS Submission: Asynchronous Mode




structure to readout

### 2<sup>nd</sup> CPS Submission: Asynchronous Mode

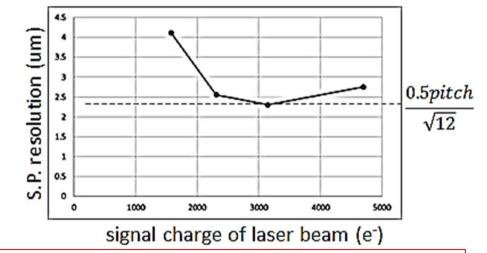
#### Y. Zhang (IHEP) & P.Yang (CCNU)

#### front-end I: Same structure as ALPIDE chip

- ENC: 8 e<sup>-</sup>
- Power cons.: 61 nA/pixel
- Threshold: 140 e<sup>-</sup>
- Peaking time < 1 us
- Pulse duration < 3  $\mu$ s



#### front-end II: CSA based front-end circuit


- Pixel size:  $25\!\times\!25\,\mu m^2$
- ENC: 24 e<sup>-</sup>
- Power cons.: 50 nW/pixel (8 mW/cm<sup>2</sup> @pixel matrix)
- Threshold: 170 e<sup>-</sup>
- Peaking time < 500 ns @ Qin <  $1.5 \text{ ke}^{-1}$
- Pulse duration < 9.4  $\mu$ s @ Qin < 1.5 ke<sup>-</sup>
- > 3.2  $\times$  3.7 mm<sup>2</sup>
- $\succ$  128  $\times$  64 pixels
- Integration time: < 5 μs/10 μs</p>
- Power consumption: < 80 mW/cm<sup>2</sup>
- Chip periphery
  - Band gap
  - Voltage DAC
  - Current DAC
  - Matrix configuration
  - LVDS
  - Custom designed PADs

### SOI Pixel Sensor R&D Activities

- First submission (CPV1) in June 2015
  - 16\*16 µm with in-pixel-discrimination
  - Double-SOI process for shielding and radiation enhancement
- Second submission (CPV2) in June 2016
  - In-pixel CDS stage inserted
  - To improve RTC and FPN noise
  - To replace the charge injection threshold

#### **<u>CPV2 performance</u>**

- Thinned down to 75um thick
- Temporal noise ~6e<sup>-</sup>
- Threshold dispersion (FPN) ~114e<sup>-</sup>
- Single point resolution measurement under infrared laser beam



See: Yunpeng Lu, Overview of SOI development (Workshop talk) Zhigang Wu, et al, A prototype SOI pixel sensor for CEPC vertex (Workshop poster)

Y. Lu & Y.Zhou (IHEP)

Y. Lu (IHEP)

### Future Plan on R&D

- laboratory and test-beam characterizations
- Coordination on sensor design team
- Novel readout scheme
- Radiation hardness
- Large area pixel array design
- Time stamp
- Small ( $16\mu m \times 16\mu m$ ) pixel, targeting on  $3\mu m$  single point resolution
  - To explore SOI 3D connection technology by designing the in-pixel digital logic in a separated tier
  - Or to look for any new process

### Summary

- R&D started along the baseline design specifications
- 2<sup>nd</sup> CPS prototype design submitted
  - More in-pixel electronics
  - New asynchronous readout architecture
- CPS test system being developed and improved
- 2<sup>nd</sup> SOI prototype test in progress
  - Sensor thinning
  - Good performance shown by preliminary results
- Overall sensor architecture in consideration
- More expertise needed and collaboration welcomed

# Thank you for your attention!

## **CEPC CDR Parameters**

#### beta\_y=2mm

D. Wang

|                                                            | Higgs        | W           | Ζ            |  |  |
|------------------------------------------------------------|--------------|-------------|--------------|--|--|
| Number of IPs                                              | 2            |             |              |  |  |
| Energy (GeV)                                               | 120          | 80          | 45.5         |  |  |
| Circumference (km)                                         | 100          |             |              |  |  |
| SR loss/turn (GeV)                                         | 1.68         | 0.33        | 0.035        |  |  |
| Half crossing angle (mrad)                                 | 16.5         |             |              |  |  |
| Piwinski angle                                             | 2.75         | 4.39        | 10.8         |  |  |
| $N_e$ /bunch (10 <sup>10</sup> )                           | 12.9         | 3.6         | 1.6          |  |  |
| Bunch number                                               | 286          | 5220        | 10900        |  |  |
| Beam current (mA)                                          | 17.7         | 90.3        | 83.8         |  |  |
| SR power /beam (MW)                                        | 30           | 30          | 2.9          |  |  |
| Bending radius (km)                                        | 10.9         |             |              |  |  |
| Momentum compaction (10-5)                                 | 1.14         |             |              |  |  |
| $\beta_{IP} x/y (m)$                                       | 0.36/0.002   |             |              |  |  |
| Emittance x/y (nm)                                         | 1.21/0.0036  | 0.54/0.0018 | 0.17/0.0029  |  |  |
| Transverse $\sigma_{IP}$ (um)                              | 20.9/0.086   | 13.9/0.060  | 7.91/0.076   |  |  |
| $\xi_{\rm y}/\xi_{\rm y}/{\rm IP}$                         | 0.024/0.094  | 0.009/0.055 | 0.005/0.0165 |  |  |
| RF Phase (degree)                                          | 128          | 134.4       | 138.6        |  |  |
| $V_{RF}(GV)$                                               | 2.14         | 0.465       | 0.053        |  |  |
| f <sub>RF</sub> (MHz) (harmonic)                           | 650          |             |              |  |  |
| Nature bunch length $\sigma_z$ (mm)                        | 2.72         | 2.98        | 3.67         |  |  |
| Bunch length $\sigma_z$ (mm)                               | 3.48         | 3.7         | 5.18         |  |  |
| HOM power/cavity (kw)                                      | 0.46 (2cell) | 0.32(2cell) | 0.11(2cell)  |  |  |
| Energy spread (%)                                          | 0.098        | 0.066       | 0.037        |  |  |
| Energy acceptance requirement (%)                          | 1.21         |             |              |  |  |
| Energy acceptance by RF (%)                                | 2.06         | 1.48        | 0.75         |  |  |
| Photon number due to beamstrahlung                         | 0.25         | 0.11        | 0.08         |  |  |
| Lifetime due to beamstrahlung (hour)                       | 1.0          |             |              |  |  |
| F (hour glass)                                             | 0.93         | 0.96        | 0.986        |  |  |
| $L_{max}/\text{IP} (10^{34} \text{cm}^{-2} \text{s}^{-1})$ | 2.0          | 4.1         | 1.0          |  |  |