Precision Test of QCD at CEPC

Hua Xing Zhu Zhejiang University

International Workshop on High Energy Circular Electron Positron Collider IHEP, Beijing July 13rd, 2017

1

Introduction

- Strong interaction is responsible for most of the visible mass in our universe.
- The discovery of QCD as the correct theory for strong interaction is a great achievement in the history of human science.
- QCD remains challenging 40 years after discovery: confinement, quark-gluon plasma, phase structure
- Even at high energy where perturbation works, QCD exhibits dramatic phenomena: jet, heavy quark production, partonic structure of proton.
- Accompany by rich theoretical structure: factorization, beautiful structure of amplitudes, connection to N=4 SYM and integrability

From LEP to LHC

- NLO wishlist completed
- NNLO becomes standard
- NLO event generator
- EFT for jet

dy [pb/GeV]

d²ơ/dp₁

LHC (2009-)

CEPC/FCC-ee/ILC

- NLO still rare
- LO event generator

LEP (1989-2000)

- running of α₅
- precision determination of α_s
- C_A ~ 3.02
- Confirmation of non-abelian interaction

Why do we need CEPC

- LEP has already produce fabulous QCD results why a new lepton collider?
 - Unprecedented luminosity and high energy, reduced power corrections 1/Q^p

- Isn't LHC already a QCD machine with complicated QCD dynamics at initial and final state?
 - Complications in PDFs, multiple scattering, underlying events, final state hadronization, all entangled together
 - At lepton collider, only the complications of final-state hadronization presents

Precision α_s determination

Why αs ?

ggF	W/Z+jets	H+jets	ttbar
O(as²)	O(as)	O(Qs ³)	O(as²)

- α_s ~ 0.1 at Z pole: slow convergent perturbation series
- Many important processes start at O(α_s²)

αs is a major source of uncertainties for Higgs production and decay [Mihaila, 1512.05194]

Channel	$M_{ m H}[{ m GeV}]$	$\Delta lpha_{ m s}$	Δm_b	Δm_c
$\mathrm{H} \to \mathrm{b} \overline{\mathrm{b}}$	126	\pm 0.4 $\%$	$\pm 0.8\%$	
$H \to c \overline{c}$	126	\pm 3.9 $\%$		$\pm~2.3~\%$
$\mathrm{H} \to \mathrm{gg}$	126	\pm 4.1 $\%$		

Process	Cross section(pb)	Scale(%)		$\mathbf{PDF} + \alpha_{s}$	$\delta lpha_{ m s}(\%)$
ggH	49.87	-2.61	+ 0.32	-6.2 +7.4	\pm 3.7
VBF	4.15	-0.4	+ 0.8	$\pm \ 2.5$	± 0.7
WH	1.474	-0.6	+ 0.3	\pm 3.8	± 0.9
\mathbf{ZH}	0.863	-1.8	+ 2.7	± 3.7	± 0.9
\mathbf{ttH}	0.611	-9.3	+ 5.9	\pm 8.9	\pm 3.0

Determination of αs

- What observables to choose for the determination?
 - The observable's sensitivity to α_s as compared to experimental uncertainties
 - The accuracy of perturbative prediction
 - The size of non-perturbative effects
 - The scale at which the measurement is performed
- Currently lattice gives the best determination
 - missing perturbative corrections
 - non-perturbative effects in 3-4 flavor transition
- An independent determination of α_s with <1% uncertainties will be an interesting possibility for future ee collider

αs from hadronic Z decay

 $\alpha_{s} \text{ through precision measurement of:} \quad R_{l}^{0} = \frac{\Gamma_{\text{had}}}{\Gamma_{l}} \qquad \sigma_{0}^{\text{had}} \qquad \Gamma_{Z}$ $R_{l}^{0} = \frac{\Gamma(Z \rightarrow \text{hadrons})}{\Gamma(Z \rightarrow \text{leptons})} = R_{Z}^{\text{EW}} N_{c} (1 + \delta_{\text{QCD}} + \delta_{\text{m}} + \delta_{\text{np}})$ $\mathcal{O}\left(\frac{m_{q}^{2}}{M_{Z}^{2}}\right) \quad \mathcal{O}\left(\frac{\Lambda^{4}}{M_{Z}^{4}}\right)$

LEP (Gfitter) $\alpha_s(M_Z^2) = 0.11196 \pm 0.0028_{\text{exp}} \pm 0.0006_{\text{QCD}} \pm 0.0006_{\text{EW}}$

- Inclusive, theoretically clean observable. Non-perturbative effects strongly suppressed
- Uncertainties dominated by experiment

• N3LO QCD known. May need N4LO + higher order mass corrections in the future

CEPC super Z factory 10¹¹ Z boson A factor of 70 reduction in statistical uncertainties

$$\Delta(\alpha_s)_{\rm exp} < 0.1\%$$

α_{s} from hadronic T decay

$$R_{\tau} \equiv \frac{\Gamma(\tau^- \to \nu_{\tau} + \text{hadrons})}{\Gamma(\tau^- \to \nu_{\tau} e^- \bar{\nu}_e)} = S_{\text{EW}} N_C (1 + \delta_{\text{QCD}} + \delta_{\text{np}}),$$

Advantage

- Inclusive observable
- $\alpha_{\rm S}$ extraction at low scale MT=1.77GeV
- Absolute error on α_s shrink by an order of magnitude when evolve to Mz

Small non-perturbative corrections, consistent with experimental data

$$\delta_{ ext{np}} = rac{ ext{ZERO}}{m_{ au}^2} + c_4 \cdot rac{\langle O_4
angle}{m_{ au}^4} + c_6 \cdot rac{\langle O_6
angle}{m_{ au}^6} + \cdots$$

- Main theory uncertainties (~2%) from • **Fixed Order Perturbation Theory v.s. Contour Improved Perturbation Theory** (resumming log of (s/m_T^2))
- **Need N⁴LO calculation to clarify**

αs from e+e- jet rates

Banfi, 1512.05194

- event rates: fraction of events having n jets (directly sensitive to α_s)
- No analytic understanding of N.P. corrections. However, parton level MC agrees well with parton shower, indicating N.P. estimate from MC reliable
- Current uncertainties dominated by perturbative scale uncertainties

- Recent development in semi-analytic tools make NNLL possible for dijet rate resummation
- significant reduction of scale uncertainties
- Future:
 - NNLO for ≥ 4 jets production and resummation
 - analytic understanding of N.P. effects

αs from e+e- event shape

Thrust

$$= \max_{\vec{n}} \frac{\sum_{i} |p_i \cdot n_i|}{\sum_{i} |p_i|}$$

C parameter

$$= \frac{3}{2} \frac{\sum_{i,j} |\vec{p}_i| |\vec{p}_j| \sin^2 \theta_{ij}}{(\sum_i |\vec{p}_i|)^2}$$

Large non-perturbative effects •

T

C

Main reason fro drifting α_s from event shape below world average

- Largest theory uncertainties from the treatment of N.P. corrections
- Two different approach •
 - Estimate N.P. effects from MC
 - mismatch between parton • level MC and shower
 - Analytic parameterization, simultaneous fit of α_s and N.P. parameter 11

Summary for α_s measurement

	Current relative precision (LEP+B fact.)	Future relative precision (CEPC)
Z decay EW fit	$ m expt. \sim 3\% \ (mostly \ statistics)$	expt. $< 0.1\%$ (possible)
	theo. $\sim 0.6\%$ (pert. QCD/EW)	theo. $\sim 0.3\%$ (N ⁴ LO, almost there)
τ decay	expt. $\sim 0.5\%$	expt. $< 0.2\%$ (possible)
	theo. $\sim 2-3\%~({\rm FOPT~v.s.~CIPT})$	theo. $\sim 1\%$ (feasible, N ⁴ LO)
jet rates	expt. $\sim 2\%$ (exp.)	expt. $< 1\%$ (possible)
	theo. $\sim 2\%$ (pert. QCD scale)	theo. $< 1\%$ (feasible, NNLO+NNLL)
event shapes	expt. $\sim 1\%$	expt. $< 1\%$ (possible)
	theo. $\sim 1-3\%$ (analytic v.s. MC N.P.)	theo. < 1% (feasible, Q^2 , NLO+NLL MC)

- Determination of α_s promising with CEPC super Z/Higgs factory

- Large statistics at Z pole
- increased Q² to suppressed N.P. effects
- Alternative methods for α_{s} determination
 - event shape with soft drop (suppressed N.P. effects)
 - · ≥ 3 jets event shapes (e.g. N-jettiness)

Event shape

Energy-energy correlation

- Measure the two-point energy correlation
- For many years this observable is only known to NLO in QCD. NNLO available only very recently

$$EEC = \sum_{a,b} \int d\sigma_{V \to a+b+X} \frac{E_a E_b}{Q^2 \sigma_{\text{tot}}} \delta(\cos \theta_{ab} - \cos \chi)$$

- NNLO improve data-theory comparison
- Is the remaining difference really due to N.P. effects?
- At 250 GeV it is expected that the N.P. effects will be reduced to 1/3
- with 5ab⁻¹ and millions of multi jets events, CEPC will definitely be able to answer the question

Using angularity to disentangle N.P.

Bell, Lee, Hornig, Talbert, in 1702.01329

• Angularity is a general event shape interpolate thrust (a=0) and broadening (a=1)

$$\tau_a(X) = \frac{1}{Q} \sum_{i \in X} E_i |\sin \theta_i|^a (1 - |\cos \theta_i|)^{1-a} \qquad \text{N.P.} \quad \frac{d\sigma}{d\tau_a}(\tau_a) \xrightarrow[]{\text{NP}} \frac{d\sigma}{d\tau_a} \left(\tau_a - c_{\tau_a} \frac{\mathcal{A}}{Q}\right)$$

- Varying the parameter a gives additional handle to N.P. effects besides Q
- Increasing Q to 250 GeV also reduce expected N.P. corrections to about 1/3

Non-global logarithms

- Non-global logarithms (Dasgupta, Salam, 2002): observable only sensitive to a portion of phase space. Examples:
 - Sherman-Weinberg jet cross section
 - Light jet mass; narrow jet broadening, jet veto, gaps between jet, jet substructure,

$$\partial_L G_{kl}(L) = \int \frac{d\Omega(n_j)}{4\pi} \frac{p_k \cdot p_l}{(p_k \cdot \hat{p}_j) (\hat{p}_j \cdot p_l)} \Big[\Theta_{\text{in}}^{n\bar{n}} G_{kj}(L) G_{jl}(L) - G_{kl}(L) \Big]$$

 Reduce to BFKL equation in the linear limit. The possibility of observing BFKL dynamics in jet physics is exciting.

Becher, Pecjak, Shao, 2016

Using event shape to for light quark Yukawa

CEPC will also be unique with clean gg sample from H decay

$Z(l^+l^-)H(X)$	gg	$b\overline{b}$	$c\bar{c}$	$WW^*(4h)$	$ZZ^*(4h)$	q ar q
$BR \ [\%]$	8.6	57.7	2.9	9.5	1.3	~ 0.02
N_{event}	6140	41170	2070	6780	930	14

Difference in event shape distribution for gluon and light quark can be used to constrain Yukawa coupling Jun Gao, 2016

 C_F C_A

- 10² Hgg Hbb |/a dø/d(1−T) Haa 10¹ HWW Zqq 10^{0} 10^{-} 10^{-2} e+e-, 250 GeV and 5 ab^{-1} 10^{-3} Thrust ∆^{h. un c.}(Hgg) ren. scale hadronization 1.4 mat. scale 1.2 1.0 0.8 0.6 0.1 0.2 0.3 0.4 0.5 0.01-T
- In the SM, r = branching ratio of light quark to jets ~ 0
- **CEPC** can reach a exclusion of about 0.045

$$y_{u,d,s} < 0.082 y_b \ (95\% \ \mathrm{CL}_s)$$

Summary

- precision QCD will benefit a lot from a high luminosity e+ecollider at 240-250 GeV
 - precision alpha_s determination
 - Z-pole global fit expect to give best determination
 - Detailed understanding of power corrections
 - establish or disprove the 1/Q functional form for N.P. corrections
 - observable dependence of N.P. corrections

Summary

- precision QCD will benefit a lot from a high luminosity e+ecollider at 240-250 GeV
 - precision alpha_s determination
 - Z-pole global fit expect to give best determination
 - Detailed understanding of power corrections
 - establish or disprove the 1/Q functional form for N.P. corrections
 - observable dependence of N.P. corrections

Thank you for your attention!