超新星遗迹粒子加速与辐射 形态

方军 云南大学 天文学系 2017 昆明

ー、超新星遗迹(売型 shell-type) 研究与观测背景

银河系宇宙线粒子(<10¹⁵eV)起 源地。(能损、能谱)

非热辐射源,射电、 X-ray、伽玛射线。

Chandra

SN 1006 -42. SNR粒子加速与辐射升心

Cosmic Ray Spectra of Various Experiments

Fang Jun 第2页

Kepler's SNR

G1.9+0.3

Cygnus loop

RX J0852.0-4622

粒子加速

(1) 扩散激波加速 (shock diffusive acceleration)

Fang Jun 第4页

 $r = \frac{\gamma_g + 1}{\gamma_g - 1}$

弯曲的粒子谱形 ^[3] 高能端变硬

Hybrid simulation results Caprioli & Spitkovsky 2014

SN1006 射电偏振观测 Reynoso et al. (2013)

Fang Jun 第8页

辐射符合极冠结构,辐射强的两极为平行激波。 辐射弱的两极对应垂直激波。

二、数值模拟结果

$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = 0,$ (1)

1、二维MHD 均匀环境

初始条件

$$\frac{\partial \rho v}{\partial t} + \nabla \cdot (\rho v v - BB) + \nabla P^* = 0, \qquad (2)$$

$$\frac{\partial E}{\partial t} + \nabla \cdot \left[(E + P^*) v - B(v \cdot B) \right] = 0$$
(3)

抛射物质自由膨胀

and $\frac{\partial B}{\partial t} + \nabla \times (v \times B) = 0.$ (4)

Fang Jun 第9页

v = r/t.

内部均匀,外部呈幂律分布

$$\rho_{\rm ej}(t, r) = \begin{cases} \rho_{\rm c}(t)(r/r_{\rm c})^{-n} & \text{if } r > r_{\rm c}, \\ \rho_{\rm c}(t) & \text{if } r < r_{\rm c}. \end{cases}$$

星际介质分布均匀。假设有3/7的介质在外层,则有

$$r_{\rm c} = R_{\rm ej} \left[1 - \frac{x(3-n)M_{\rm ej}}{4\pi\rho_0 R^3} \right]^{1/(3-n)}, \qquad \rho_{\rm c} = \frac{3(1-\eta)M_{\rm ej}}{4\pi r_{\rm c}^3},$$

Figure 1. Spatial distribution of density in units of $m_{\rm H}$ cm⁻³ during the dynamical evolution of a SNR with $\gamma = 5/3$. Here, t' indicates the evolution time in units of 98 yr. J.

TO THE PILL IN 10

Figure 2. Left panel: magnitude of magnetic field in units of 4.586×10^{-4} G at t' = 9 for $\gamma = 5/3$; the other parameters are the same as Fig. 1. Right panel: magnitude of magnetic field in units of 4.586×10^{-4} G at t' = 9 for $\gamma = 1.2$; the other parameters are the same as Fig. 5.

Figure 3. Angular-averaged magnitude of the magnetic field from the 2D simulations with $\gamma = 5/3$ (solid line), 4/3 (dotted line) and 1.2 (dashed line). The other parameters are the same as Fig. 1.

激波加速及粒子逃逸过程可以改变有效绝热 指数。绝热指数变小,激波压缩率增加,激 波宽度减小。

激波区,被激波化的抛射物质遭遇激波化的 星际介质,激发了Rayleigh-Taylor不稳定性, 这些区域产生高密度和强磁场。

Fang Jun 第11页

2、三维MHD 非均匀环境

Fang Jun 第12页

SNR粒子加速与辐射形态

Fang Jun 第13页

0.0135

0.0120

0.0105

0.0090

0.0075

0.0060

0.0045

0.0030

0.0015

2.4

1.6

1.2

ppyz

y (pc)

15

10

-10

-15

z (pc)

15

10

5

0

-5

z (pc)

ppyz

10

5

10

z (pc)

2.8

2.4

2.0

1.6

1.2

0.8

0.4

z (pc)

-10

-15

-10

15

synxz

ppxz

x (pc)

SN1006

Fang Jun 第15页

Fang Jun 第16页

Fang Jun 第17页

Cygnus loop

形态如何形成?

Bright X-ray source limb brightened at X-ray and radio wavelengths $d \sim 540 \text{pc}, \text{D} \sim 28 \text{pc}, \text{T} \sim 10^4 \text{ yr}.$ The remnant of a Type II SN explosion a "breakout" region in the south, a bright northern limb, several depressions on the shock, The profiles of the limbs on both sides of the southern breakout are asymmetric. There is a bright region within the outer limb in the northwest.

3D HD simulation

Assuming the SN is occurred in the cavity resulting from the interaction between the stellar wind of the progenitor with a spatial velocity and the ISM.

The density which increases form the equator towards the pole with an equator-to-pole ratio ξ .

$$\begin{split} & \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0, \\ & \frac{\partial \rho \mathbf{v}}{\partial t} + \nabla \cdot \rho \mathbf{v} \mathbf{v} + \nabla P = 0, \\ & \frac{\partial E}{\partial t} + \nabla \cdot (E + P) \mathbf{v}) = - \left(\frac{\rho}{m_{\rm H}}\right)^2 \Lambda(T), \end{split}$$

$$\rho(r,\theta) = \frac{A}{r^2} f(\theta),$$

$$v_{\rm w}(\theta) = \frac{v_{\rm p}}{\sqrt{f(\theta)}},$$

Fang Jun 第19页


```
Fang Jun 第20页
```


Fang Jun 第21页

Parameter	Model A	Model B	Model C	Model D
α (°)	50	50	50	30
ξ	10	10	10	4
$v_{p1} (\text{km s}^{-1})$	15	15	15	15
v_{s2} (km s ⁻¹)	15	300	150	300

Fang, Yu & Zhang 2017, MNRAS, 464, 940

15 -15 -10 -5 JNK杠丁加还刁袖扪形心

0

5

-15-10-5

10

5

10 15

0

(1)利用3D MHD数值模拟,研究在湍动环境下超新星遗迹的动力学演化过程;在加速粒子平行激波假设下,获得遗迹的辐射分布形态。

(2) 超新星遗迹RX J0852.0-4622的非均匀辐射分布形态 可解释为遗迹在湍动环境下演化的结果。

(3)通过假定存在低密度区域以及湍动环境,获得了遗迹SN1006的辐射形态。

(4) 对Cygnus loop, 假定遗迹在星风产生的空腔中演化。 星风经历了速度不同两阶段,可产生观测到结构。

Fang Jun 第23页

Thanks

