SIPM在WFCTA上的应用研究

张寿山

高能物理研究所 参加单位:四川大学、云南大学、意大利INFN、 日内瓦大学

LHAASO合作组会议 在云南大学2017.1.17-20

Outline

- Introduction
- LHAASO-WFCTA SiPM camera R&D
- Conclusion and discussion

Motivation

- ▶基于光电倍增管(PMT)的大气成像切伦科夫光和荧光望远镜技术:
 - •大气成像契伦科夫望远镜实验: VERITAS, HESS, MAGIC ...
 - •荧光探测器实验: HIRES, TA, AUGER ...
 - •运行在晴朗无月夜
 - PMT老化: 随着曝光光强增加, 增益逐渐降低,
 - 有效观测时间10%

▶此研究领域对长有效观测时间的望远镜有强烈的需求。

- ▶ 优点: 强曝光不老化、高光探测效率(25%-50%)、低偏置电压(几十伏)和对磁场不敏感等;
- ▶ 基于SiPM技术的大气成像切伦科夫望远镜,可以月光下观测,有效观测时间增加到30%。
- ▶ SiPM: 由工作在盖革模式的雪崩二极管阵列组成;
- ▶ 发明于二十世纪九十年代末,被核医学和高能物理领域寄予厚望,有望 取代PMT,是未来极微弱光探测器的发展方向;

- Is made of an (APD + quenching resistor) array
- APD: operates in Geiger mode, the output signal is 0 and 1 analog signal
- APD size: 15 μm 100 μm
- 1600 APDs/mm² ($25\mu m$)

应用例子

- The first G-APD Cherenkov telescope (FAST): La Palma, Canary Islands, Spain, 2011年运行
 - FOV: 4.5°, 1440 pixels, 9.5m²的反射镜, pixel size: 0.11°
- ➤ CTA: 小型望远镜(5 TeV 300 TeV), Schwarzschild-Couder telescope

CTA: SiPM成像探头样机

LHAASO

KM2A: 5195 EDs 1171 MDs

第十八

WFCTA: 18 Cherenkov telescopes (1024 pixels/telescope)

WCDA: 3000 cells (25m²/cell)

Daochen, Sichuan (29°21' 31" N, 100°08'15" E, 4410 m a.s.l., 600 g/cm)

Wide Field of View Cherenkov Telescope (WFCTA)

5m² spherical mirror;
32×32 SiPMs array
Pixel size 0.5°;
FOV: 14° × 16°.

SiPM camera

A prototype of WFCTA

SiPM 应用的关键点

- 动态范围
- ▶ 长光脉冲响应
- ▶ 增益-温度补偿回路
- ▶ 信噪比

FBK vs. Hamamatsu

	FBK (25 μm)	Hamamatsu (25 µm)
PDE	40%@400 nm	23%@400 nm
Fill factor	72%	47%
Dark count rate	~80kHz/mm ²	~50k/mm ²
Optical cross talk	~15%	~1%
Gain	~2×10 ⁶	~0.7×10 ⁶
Break down voltage	~26.5V	~53V
Gain vs. temperature	~1.5%/°C	~1.5%/°C
Break down voltage vs. temperature	~26 mv/°C	~54 mv/°C

HAMAMASTU

SiPM & pre-amplifier board

> The dynamic range of the SiPM is proportional to the total number of cells.

At least 200,000 cells is required for 32,000 pe.

Larger area SiPM has a bigger DCR.

The small cell pitch: will produce small fill factor and then small PDE.

$$N_{pe}^{m} = N_{cell} \left(1 - e^{-N_{pe}^{\exp}/N_{cell}}\right) \quad N_{cell} ? \quad N_{pe}^{\exp} \Longrightarrow N_{pe}^{m} ; \quad N_{pe}^{\exp}$$

$$Deviation = \frac{N_{pe}^{m} - N_{pe}^{\exp}}{N_{pe}^{\exp}}$$

HAMAMASTU: 12 mm imes12 mm

The long light pulse response

with C1=1 µF.

Breakdown voltage vs. temperature: ~26 mv/°C Gain vs. temperature: ~1.5%/ °C

SiPM阵列增益监测

- ▶ SiPM增益监测: LED安装在反射镜前,频率1Hz,光强 ~1000pe
 - 无月亮的晴朗晚上, 夜空背景光的典型强度: ~50MHz
 - Resolution: $\sigma/1000/\text{sqrt}(N) = \text{sqrt}(\sigma_b^2 + \sigma_e^2 + \sigma_{SiPM}^2)/1000/\text{sqrt}(N)$
 - 检测精度: <1%@1 minute @ 1000×typical sky background

Schematic diagram of SiPM camera assembly

Optical filter

Square SiPM array: 20 mm×20mm

- Light concentrator: is to increase the effective area of the SiPM
- SiPM base board: 16 SiPMs, 16 temperature sensors (embedded in the SiPM chip), and 16 pre-amplifiers
- Slow control board:
 - 16 temperature and high voltage compensation loops;
 - 16 channels of high voltage power supply.
- Analogue board: 16 channels of amplifier (high gain and low gain) and shaping circuit
- Digital board: 50 MHz FADC and FPGA

	FBK: 20×20 mm ²	Hamamatsu: Hexagonal	PMT
Relative PDE	40%@400 nm	23%@400 nm	16%@400 nm
Dark count rate	32 MHz	7MHz	~kHz
Sky background noise	~50 MHz	~30 MHz	~20 MHz

总结和讨论

- •SiPM的性能能够满足LHAASO-WFCTA的要求
 - 有效观测时间增加到30% (PMT: 10%);
 - SiPM还具有高光探测效率(25%-50%)、光子计数、低 偏置电压(几十伏)和对磁场不敏感等优点;
 - 低成本: 价格约是PMT价格的一半;
 - 在常温下(~20°): 信噪比、电荷分辨率等和PMT方案 相当。
- SiPM技术是下一代大气成像契伦科夫望远镜和荧光 探测器的发展方向之一。
- 下一步工作计划: 4月底之前完成WFCTA-SiPM成像 探头定型。

Thank you for your attention!

Three proposals of SiPM array

	Square SiPM 20mm×20mm	Hexagonal(side length=7.2mm)	Square SiPM 12mm×12mm
SiPM	Collaboration with INFN (FBK)	Hamamatsu (customized)	Hamamatsu (commercial)
PDE	40%@400 nm	23%@400 nm	23%@400 nm
Fill factor	72%	47%	47%
Inlet to outlet ratio of Winston cone	1.49	4.42	4.13
Cell size	25µm	25µm	25µm
SiPM area	400 mm ²	134.7 mm²	144 mm²
Relative deviation	4%@32000pe	4%@32000pe	5%@32000pe
Charge resolution	13%@100pe	12%@100pe	12%@100pe
Dark count rate	32 MHz	7MHz	7.2MHz
Sky background noise	~50 MHz	~30 MHz	~30 MHz

Square SiPM array: 20 mm×20mm

EXIT: 20mm×20mm ENTRANCE:24.4mm×24.4mm HEIGHT:9.6mm Light spot from the reflective mirror

Light distribution output from the cone

Estimate the non-linearity from the nonuniform light distribution cause by the light spot and the light concentrators

$$N_{pe}^{m} = N_{cell} (1 - e^{-N_{pe}^{\exp}/N_{cell}})$$

	SiPM	PMT
Dynamic range	Proportional to total number of APD cells	Dependent on PMT type, HV distribution and readout method
Photon counting	Yes	Νο
Charge resolution	12-13%@100pe, 4%@1000pe	12%@100pe, 4%@1000pe
Pulse duration	20 - 50 ns	~6 ns
Dark count rate	80 kHz/1 mm ² @ thrd=0.5 pe	<1kHz @ thrd=0.5 pe
Aging	No aging	Aging
Magnetic fields	No sensitive	Sensitive
Gain	1×10 ⁶ @ several tens volts	1×10 ⁶ @ >1000 V
Temperature	~1.5%/°C	~0.2%/°C
Optical cross talk	3% - 15%	Νο

LHAASO-WFCTA vs. CTA

	CTA-SSTs	LHAASO-WFCTA
Energy range	5 TeV – 300 TeV	30 TeV – 1 EeV (Cherenkov mode: 30TeV – 10 PeV, 10PeV-100PeV; Fluorescence mode: > 100PeV)
Diameter of mirror	~ 4 m	~ 2.3 m
Pixel size	~ 0.25	~ 0.5
FoV	9° ×9°	16° × 16°
Dynamic range	1 pe - 2000 pe	10 pe – 32000 pe
Light pulse duration	6 ns - 50 ns	6 ns - 3 μs
Observation mode	Cherenkov light	Cherenkov and Fluorescence light

Cooling System

Refrigeration semi-conductor

Aluminum alloy framework

I-V curve for breakdown voltage and quenching resistor

Optical Cross talk & After pulse

PDE=Qe(APD) \times fill factor

Hexagonal SiPM array

Schematic diagram of SiPM camera assembly

Entrance window: Side to side length is 25.4 mm Exit window: Side to side length is 12.12 mm

light concentrators

A module has 4×4 SiPMs.

- Light concentrator: is to increase the effective area of the SiPM
- SiPM base board: 16 SiPMs, 16 temperature sensors (embedded in the SiPM chip), and 16 pre-amplifiers
- Slow control board:
 - 16 temperature and high voltage compensation loops;
 - 16 channels of high voltage power supply.
- Analogue board: 16 channels of amplifier (high gain and low gain) and shaping circuit
- Digital board: 50 MHz FADC and FPGA

Light spot from the reflective mirror

Light distribution output from the cone 160-140 120-100-80-60-40-20- $\mathcal{Y}(m_{n_{1}})^{58} \frac{56}{54} \frac{52}{50} \frac{54}{48}$ x^{-2} (mm)

-10

-12

Estimate the non-linearity from the nonuniform light distribution cause by the light spot and the light concentrators

$$N_{pe}^{m} = N_{cell} (1 - e^{-N_{pe}^{\exp/N_{cell}}})$$

