

EXTREMELY BRIGHT GRB160625B WITH MULTI-EPIDOSES EMISSION: HINTS FOR LONG-TERM EVOLUTION OF THE GRB EJECTA

Hou-Jun Lv (吕候军)

Guangxi University

广西大学

Collaborators: Shuqing Zhong, Jing Lv, Haiming Zhang, Xiaoli Huang, Ruijing Lu, Enwei Liang

Outline

- Introduction of background and observations
- Standard fireball model
- GRB 160625B
 - observation properties
 - long-term evolution of ejecta
 - possible central engine
- Summary

1. Brief History

- 1967 (Vela): Discovery
- 1973-1991: Misleading, no any more progress
- 1991-1997 (BATSE Era) : Long vs short, Isotropic Distribution, Band spectrum; Fireball model; predicted the afterglow.
- 1997-2004 (BeppoSAX and HETE-2 Era) :
 - Afterglows → Cosmologic origin (1997 Science breakthrough)
 - Long GRB-SN connection → GRB980425/SN1998bw, 030329/SN 2003dh (1999, 2003 Science breakthrough)
- 2004- (Swift Era): AG of Short GRBs; Late X-ray Flares; High-z GRBs; Canonical X-ray AG LC (2005 Science breakthrough)

2008- (Fermi Era): GeV photons emission in L/S GRBs, delay of HEPs

Prompt emission GRB LCs-complicated

Irregular LCs **Duration** \sim ms - 1000 s **Time variational** or \sim 0.1ms

Non-thermal, smoothly joint broken power law spectrum

Briggs et al 1999; Abdo et al 2009

Collapsars: model for long GRBs

Massive stars. "collapsar" model

Long/Soft (Type II)

- GRB/SN associations
- Long GRB host galaxies are star-forming galaxies
- With a stellar envelope, the accretion time scale can be "long"

Compact star mergers: model for short GRBs

0.1

10.0

 $t_{\rm m}$ (s)

100.0

- Typically at outskirts of the
- host galaxies
- In regions of low star formation in star-forming galaxies
- Numerical simulations suggest that the durations of the bursts are typically "short"

Two types of central engines

(1) Black hole + accretion disk systems (Eichler et al. 1989; Woosley 1993; Narayan et al. 2001; MacFadyen et al. 2001):

$$L_{\rm GRB} = \zeta \dot{M} c^2 = 1.8 \times 10^{51} \text{ erg s}^{-1} \zeta_{-3} \left(\frac{M}{1 \text{ M}_{\odot} \text{ s}^{-1}} \right)$$

Neutrino-dominated accretion flow

High accretion rate--hot plasma ---Close to the inner disk---neutrino cooling effective--disk temperature drops, density increases,

Spin energy of the BH \rightarrow Blandford-Znajek mechanism:

 $L_{\rm BZ} \sim 3^* 10^{50} B_{15}^2 (M_{\rm BH}/3M_{\rm sun})^2 a^2 f(a)$ erg s⁻¹ for $a \sim 1$, $M_{\rm BH} \sim 3M_{\rm sun}$ and $B \sim 10^{15}$ Gauss.

(Poynting-flux dominated outflow)

Q: If a black hole may not be formed immediately, but instead that a highly magnetised rapidly rotating pulsar, or magnetar may formed

- (2) Millisecond magnetar (rapidly spinning-highly magnetized neutron star)
 - Rotational energy (Usov 1992; Duncan & Thompson 1992; Dai &Lu 1998; Metzger et al 2011)

$$P(t) = P_0 \left(1 + \frac{4\pi^2}{3c^3} \frac{B_p^2 R^6}{I P_0^2} t\right)^{1/2}$$
$$= P_0 \left(1 + \frac{t}{\tau}\right)^{1/2}$$

 $M_{max} = M_{TOV} (1 + \alpha P^{\beta})$

Picture of Standard fireball model

Prompt emission

Afterglow emission

External shock

M\eszaros and Rees, 1993; Rees and Meszaros, 1994; Vaughan et al. 2005

GRB 160625B

- Observed by Swift and Fermi
- Three episodes emission
 - a short-hard precursor
 - bright main emission
 - long-term extended emission
- Duration: tens of seconds
- z=1.406
- E_{iso,r}~3*10⁵⁴ erg, L_{iso}~4*10⁵³ erg/s

Thermal spectra

Multi-color blackbody (mBB)

 $F_{\text{MBB}}(\mathbf{E}, \mathbf{T}_{\text{max}}) = \int_{\mathbf{T}_{\text{min}}}^{\mathbf{T}_{\text{max}}} \frac{\mathrm{dA}(\mathbf{T})}{\mathrm{dT}} \frac{\mathbf{E}^3}{\exp[\mathbf{E}/\mathbf{kT}] - 1} \qquad F(T) = F_{\text{max}}(\frac{T}{T_{\text{max}}})^q$ Ryde et al (2010) GRB 160625B t:-0.320-1.088s 10 keV² (Photons cm⁻² s⁻¹ keV⁻¹) 1000 100 10 10 sign(data-model) × $\Delta \chi^2$ -10 100 107 10 1000 104 104 10% 10^e Energy (keV)

Precursor

Main emission: (MBB+CPL)

Extend emission: (CPL+PL)

GRB 160625952 t:-138-230s

Estimated Lorentz factor

$$\Gamma_0 = [(0.16)(1+z)^2 D_{\rm L} \frac{Y \sigma_{\rm T} F^{\rm obs}}{2m_{\rm p} c^3 \Re}]^{1/4}$$

$$\Re = (\frac{F_{\rm BB}^{\rm obs}}{\sigma T_{\rm max}^4})^{1/2}$$

$$F^{\rm obs} = F^{\rm obs}_{\rm BB} + F^{\rm obs}_{\rm non-BB}$$

Pe'er et al (2007)

TABLE 3 The spectra fitting results and estimated Lorenz factor

Time Interval(s)	$F_{BB}^{obs}({\rm erg~cm^{-2}s^{-1}})$	$F^{obs}_{non-BB}({\rm erg}\;{\rm cm}^{-2}{\rm s}^{-1})$	Γ_0	$R_{\rm ph}({ m cm})$
Precursor				
$[-0.320 \sim 1.088]$ s	1.18e-6	0	175	
Main emission				
$180 \sim 187 s$	1.02e-6	2.24e-6	1162	1.52e10
$[187 \sim 188]s$	1.54e-5	2.41e-5	1798	5.01e10
$[188 \sim 189]s$	8.98e-5	6.42e-5	2274	$9.64\mathrm{e}10$
$[189 \sim 190]$ s	1.01e-4	4.19e-5	2035	$1.24\mathrm{e}11$
$[190 \sim 191]s$	4.64e-5	1.81e-5	1540	1.29e11
$[191 \sim 192]s$	1.45e-5	9.93e-6	878	2.66e11
$[192 \sim 193]s$	1.43e-5	1.13e-5	879	2.78e11
$[193 \sim 194]s$	2.57e-5	1.19e-5	959	3.13e11
$[194 \sim 195]s$	3.57e-5	1.55e-5	1095	2.87e11
$[195 \sim 196]s$	3.37e-5	1.62e-5	992	3.76e11
$[196 \sim 197]_{\rm S}$	2.49e-5	1.01e-5	883	3.74e11
$197 \sim 198$ s	2.93e-5	1.97e-6	975	2.48e11
$198 \sim 199$ s	2.47e-5	1.05e-5	953	2.98e11
$[199 \sim 200]$ s	3.39e-5	7.57e-6	1028	2.81e11

Evolution of T_min, T_max, and Gamma_0

Multi-wavelenght spectra

Consistent with external shocks

 $\theta_{\rm j} = 12.04^{\circ} \pm 2.23^{\circ}$ $E_{\rm K,iso} = (1.72 \pm 0.12) \times 10^{55} \text{erg}$

Central engine

 $\mathbf{E}_{K} = \mathbf{E}_{K,iso} f_{b} \qquad \mathbf{E}_{\gamma} = \mathbf{E}_{\gamma,iso} f_{b} \qquad f_{b} = 1 - \cos \theta_{j} \simeq (1/2)\theta_{j}^{2},$

Magnetar (X): $E_{\rm rot} = \frac{1}{2} I \Omega_0^2 \simeq 2 \times 10^{52} \text{ erg } M_{1.4} R_6^2 P_{0,-3}^{-2},$ $E_{\gamma} + E_{\rm K} \gg E_{\rm rot},$

NDAF model ($\sqrt{}$): $L_{\nu\overline{\nu}} \simeq 1.1 \times 10^{52} \text{erg s}^{-1} (\frac{\text{M}}{\text{M}_{\odot}})^{-3/2} (\frac{\text{M}}{\text{M}_{\odot}/\text{s}})^{9/4}$

High energy emission with LHAASO

GRB的高能峰在哪?高能辐射区域在哪? 高能粒子的加速机制?

Conclusions

Long-team evolution of ejecta

- precursor---> photosphere
- Main emission--->photosphere+internal shock
- Extend emission--->internal shock
- Early optical and later X-ray
 - likely a prompt optical, but has reversed shock contributions.
 - later afterglow is consistent with standard external shock model.
- Central engine: NDAF model

Thanks