Dark Photon

- A candidate of DM (Dark Matter)
- U(1) Gauge boson (A') associated with dark sector.

It has very similar structure as QED, like "dark(invisible) photon"

Re-normalizable theory

There are many models which is not re-normalizable, called as a Effective Field Theory (EFT)

QED Analogy

Lagrangian of QED

$$L_{QED} = \overline{\varphi} \left(i \gamma_{\mu} D^{\mu} - m \right) \varphi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

$$= \overline{\varphi} \left(i \gamma_{\mu} \partial^{\mu} - m \right) \varphi + e \cdot \overline{\varphi} \gamma_{\mu} \varphi \cdot A^{\mu} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

Dirac equation

 Maxwell's equations $(E^{\mu\nu} \rightarrow \mu \wedge \nu \rightarrow \nu \wedge \mu)$

$$(F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu})$$

QED Analogy

Lagrangian of Dark Photon

$$\begin{split} L_{D} &= \overline{\chi} \Big(i \gamma_{\mu} D^{\mu'} - m_{\chi} \Big) \chi - \frac{1}{4} F_{\mu\nu}{}' F^{\mu\nu'} \\ &= \overline{\chi} \Big(i \gamma_{\mu} \partial^{\mu} - m_{\chi} \Big) \chi + (-g_{D}) \cdot \overline{\chi} \gamma_{\mu} \chi \cdot A^{\mu'} - \frac{1}{4} F_{\mu\nu}{}' F^{\mu\nu'} \\ &+ \frac{1}{2} m_{A'}{}^{2} A_{\mu}{}' A^{\mu'} + \varepsilon \cdot F_{\mu\nu} F^{\mu\nu'} \Big)^{2} \end{split}$$

- ① Mass term by spontaneous symmetry breaking
- 2 Mixing term with QED (SM) side

Mixing

Notation from, Nuclear Physics B 887 (2014) 441

$$\mathcal{L}_{gauge} = -\frac{1}{4}F_{\mu\nu}^{1}F^{1\mu\nu} - \frac{1}{4}F_{\mu\nu}^{2}F^{2\mu\nu} - 2cF_{\mu\nu}^{1}F^{2\mu\nu}$$

$$\mathcal{L}_{int} = g_1 j_1^{\mu} A_{\mu}^1 + g_2 j_2^{\mu} A_{\mu}^2 = \begin{pmatrix} j_1^{\mu} & j_2^{\mu} \end{pmatrix} \begin{pmatrix} g_1 & 0 \\ 0 & g_2 \end{pmatrix} \begin{pmatrix} A_{\mu}^1 \\ A_{\mu}^2 \end{pmatrix}$$

Change of Base $(A_{\mu} \leftrightarrow B_{\mu})$

$$\mathcal{L}_{gauge} = -rac{1}{4} G_{\mu
u}^1 G^{1 \mu
u} - rac{1}{4} G_{\mu
u}^2 G^{2 \mu
u}$$
 ---- Diagonal

$$\mathcal{L}_{int} = \frac{1}{2\sqrt{2}} \begin{pmatrix} j_1^{\mu} & j_2^{\mu} \end{pmatrix} \begin{pmatrix} \frac{g_1}{\sqrt{\lambda_1}} & \frac{-g_1}{\sqrt{\lambda_2}} \\ \frac{g_2}{\sqrt{\lambda_1}} & \frac{g_2}{\sqrt{\lambda_2}} \end{pmatrix} \begin{pmatrix} B_{\mu}^1 \\ B_{\mu}^2 \end{pmatrix}$$

---- But, both $A^{\mu}/A^{\mu'}$ couple to currents

Experimental Constraint

- -- Four categories are explained in the paper --
 - A. Beam-dump constraints
 - B. Precision QED constraints
 - C. Cosmological bounds
 - D. Supernova Almost no constraint to compared with the other

Beam(-dump) constraints

· LSND experiment:

famous for motivation of sterile-neutrino, but this time, the upper limit on B.R. of $\Gamma(\pi^0 \to \nu_{\mu} \overline{\nu}_{\mu}) / \Gamma(\pi^0 \to all)$

$$\pi^0 o \gamma A' o \gamma \chi \overline{\chi}$$
 , and $\chi e o \chi e$

Where Cherenkov light is observed from final electron as if

$$\bar{\nu}_{\mu} + p \rightarrow \mu^{+} + n$$
.

· E787/E949 experiments @ BNL

Upper limit on B.R. of $K^+ \to \pi^+ \nu \bar{\nu}$

$$K^+ \to \pi^+ A' \to \pi^+ \chi \overline{\chi}$$

Axion search from E137 @ SLAC

B. Precision QED constrains (g-2 experiments)

Spin \vec{S} and the magnetic moment \vec{M} of a particle is given as

$$\overrightarrow{M} = g \frac{q}{2m} \overrightarrow{S}$$

where g==2 is determined from Dirac-equation

$$a = (g-2)/2 = 0$$
, if g=2

But if we calculate the process with higher order, , ,

$$a^{\text{SM}} = a^{\text{QED}} + a^{\text{EW}} + a^{\text{hadrons}}$$

$$\neq 0$$

Order of the correction , , ,

 $a_{\mu}^{
m QED} = 116\,584\,718.09(0.15) \times 10^{-11}$

 $=194.8\times10^{-11}$,

$$\begin{split} a_{\mu}^{\text{EW}}[\text{1-loop}] &= \frac{G_{\mu} m_{\mu}^2}{8\sqrt{2}\pi^2} \bigg[\frac{5}{3} + \frac{1}{3} \left(1 - 4 \sin^2\!\theta_{\text{W}} \right)^2 \\ &+ \mathcal{O} \bigg(\frac{m_{\mu}^2}{M_W^2} \bigg) + \mathcal{O} \bigg(\frac{m_{\mu}^2}{m_H^2} \bigg) \bigg] \,, \end{split} \quad a_{\mu}^{\text{Had}}[\text{LO}] = 6\,955(40)(7) \times 10^{-11} \end{split}$$

From "The muon anomalous magnetic moment" by A. Hocker (CERN) and W. J. Marciano (BNL)

Discrepancy between experiment and theory calculation

$$\Delta a_{\mu}^{\text{Exp-SM}} = 255(63)(49) \times 10^{-11} \Longrightarrow 3.2\sigma$$

Contribution from SUSY?

Contribution from dark photon

 $m_{\text{dark photon}} [\text{MeV}]$

C. Cosmological constraints -- CMB

Dark matter annihilation can modify the observed temperature and polarization fluctuations of the CMB.

- Abundance of the DM is known
- CMB fluctuation is measured by COBE, WMAP, Plank, , ,

$$\chi \overline{\chi} \rightarrow (A) \rightarrow e^+ e^-$$

T. R. Slatyer, N Padmanabhan, and D. P. Finkbeiner, Phys. Rev. D 80, 043526 (2009)

Constrain about this cross-section is derived.

Reference: CMB fluctuation from WMAP/Plank

•
$$e^2 \simeq 1.3 \times 10^{-8} \left(\frac{m_{A'}}{10 \text{ MeV}} \right)^4 \left(\frac{\text{MeV}}{m_{\chi}} \right)^2 \left(\frac{10^{-2}}{\alpha_D} \right)$$
. (3)

- -- It is explained that above relation is derived from the result of the observations with constraints by assuming mass hierarchy, particle-antiparticle symmetry, and so on.
- If mixing $\mathcal E$ is large enough, then annihilation process happens so frequently $\xrightarrow{}$ $\Omega_{_{\mathcal I}} < \Omega_{_{DM}}$

(χ is not dominant component of DM)

FIG. 5: Regions of the A' parameter space (ε vs $m_{A'}$) excluded by this work (green area) compared to the previous constraints [7, 18–20] as well as the region preferred by the $(g-2)_{\mu}$ anomaly [5].

Main arguments of this paper (especially, after \$4 (page 5))

-- Limits of a forward calorimeter experiment --

Schematic of assumed experiment setups

Real Missing Energy	Magnitude (10 ¹⁶ EOT _{eff})
Brem + CCQE	$<1 \ (T \lesssim 0.1)$
$CCQE + \pi^0$	$<1 \ (T \lesssim 0.1)$
Moller + CCQE	$\ll 1 \ (T \lesssim 0.1)$
$eN \to eN\nu\bar{\nu}$	~10 ⁻²
Reducible Backgrounds	Fake Rate/10 ¹⁴ EOT _{eff}
γ non-interaction	$\sim 3 \times 10^8 e^{-\frac{7}{9}(T/X_0=45)} \ll 1$
$\gamma p \to \pi^+ n$	$\sim 10^2 \times \epsilon_{\pi} \epsilon_n$
$\gamma^* p \to \pi^+ n$ (backscatter π^+)	$\sim 3 \times 10^1 \times \epsilon_n$ (see text)
$\gamma N \to (\rho, \omega, \phi) N \to \pi^+ \pi^- N$	$\sim 2 \times 10^4 \epsilon_\pi^2$
$\gamma^* n \to n \bar{n} n$	$\sim 3 \times 10^3 \times \epsilon_n^3$
$eN \rightarrow eN(\mu^+\mu^-, \pi^+\pi^-)$	$\sim 10^4 \times \epsilon_{\mu/\pi}^2$
$\gamma N \rightarrow N \mu^+ \mu^-$	$\sim 6 \times 10^3 \times \epsilon_{\mu}^2$

Summary of backgrounds (Scenario B)

Since it is too detail,,, I just bring a slide of "LDMX" next

Light Dark Matter experiment (LDMX)

Project Status

SLAC

- DASEL beamline design is at an advanced stage
- Project is being discussed with DOE to allow installation of the DASEL beamline during the LCLS-II construction stop in 2019

- LDMX experiment design process is making good progress
- Current studies are focused on identifying photonuclear backgrounds in the calorimeters and target
- Construction schedule focused on 2020/21 operation
- Compatible with CMS endcap calorimeter construction schedule

18

Missing Momentum Concept

- Disappearance measurement: Use an electron beam on an active fixed target and identify events where momentum (energy) is lost
 - Use of a moderate energy electron beam suppresses neutrino backgrounds compared with proton beams

Cartoon Guide to LDMX

- Signal definition is a low energy, moderate p_T
 electron and an otherwise empty calorimeter
 given a full-energy beam electron
 - Recoil p_T between ~80 MeV and 800 MeV
- Backgrounds come from hard interactions in the target (e.g brehmstrahlung)
 - Several challenging backgrounds arise when the forward photon has a photonuclear interaction

5

The LDMX Detector Concept

- Dual purpose Magnet and Tracking
- Collimated precision tagger tracker in full field \rightarrow 10% X_0 target \rightarrow compact and precision recoil tracker in fringe field
- Si-W sampling calorimeter (ECAL)
- 40 X_o, 30 Layers, 7 modules per layer of high efficiency, high granularity calorimetry
- Scintillator-Steel sampling calorimeter (HCAL) behind and around ECAL
- 15 layers, un-segmented for simplicity: Veto any event with hadronic activity

Tracker designs based on HPS

target

Front-end readout boards Silicon Sensors

- Tagging tracker: Tag incoming e-
 - Precise p and (x,y) position at target.
 - Recoil tracker:
 - Associate tag to recoil
 - Determine p after the target down to 50 MeV

 Screen out straggling (off E_{Beam}) electrons

APV25 hybrids

- Measure Δp across target
 - The key discriminator

Hadronic Veto Calorimeter

- Critical role is in the identification of <u>neutron</u>containing backgrounds
- Technology concept is based on iron absorber and plastic scintillator read out using CMS Phase 1 SiPM-based electronics

 Ongoing optimization studies including a "surrounding" HCAL to catch large-angle (45) neutrons and catch wide-angle brehmstrahlung in the target

14

Physics potential

