Observation of $\Lambda_c^+ o n K_S^0 \pi^+$

Gu Shan

2017.9.8

JC 31 report

Introduction

- The charmed baryon Λ_c^+ decays eventually into a proton or a neutron, each taking about half of the total branching fraction (BF). However, to date no direct measurement of the decay modes involving a neutron has been performed.
- Precise measurement of the BF for $\Lambda_c^+ \to n K_S^0 \pi^+$ provide stringent tests on the isospin symmetry in the charmed baryon decays by examining the triangle relation.
- \square A comparison to $B(\Lambda_c^+ \to p(\bar{k}\pi)^0)$ provides an important test of isospin symmetry and final state interactions.

Analysis method

- The data analyzed at \sqrt{s} = 4.599 GeV.
- $\square \Lambda_c^+ \overline{\Lambda}_c^-$ are produced in pairs and no additional hadron is kinematically allowed.
- lacktriangle First, select a data sample of $\overline{\Lambda}_c^-$ baryons by reconstructing exclusive hadronic decays, called the single tag (ST) sample.
- Then, search for $\Lambda_c^+ \to n K_S^0 \pi^+$ in the system recoiling against the ST $\overline{\Lambda}_c^-$ baryons, called the double tag (DT) sample.
- ☐ The neutron is not detected, its kinematics is deduced by four-momenta conservation.
- □ The absolute BF of $\Lambda_c^+ \to n K_S^0 \pi^+$ is then determined from the probability of detecting the process $\Lambda_c^+ \to n K_S^0 \pi^+$ in the ST sample.
- □ This method provides a clean and straightforward BF measurement independent of the total number of $\Lambda_c^+ \overline{\Lambda}_c^-$ events produced.

Singly tagged $\overline{\Lambda}_c^-$

lacksquare The Singly tagged $\overline{\Lambda}_{c}^{-}$ are reconstructed by

$$\begin{array}{llll} \Lambda_c^-
ightarrow ar{p} K_S^0, & \Lambda_c^-
ightarrow ar{p} K^+\pi^- \ \Lambda_c^-
ightarrow ar{p} K_S^0\pi^0, & \Lambda_c^-
ightarrow ar{p} K^+\pi^-\pi^0, \ \Lambda_c^-
ightarrow ar{p} K_S^0\pi^+\pi^-, & \Lambda_c^-
ightarrow ar{\Lambda}\pi^-, \ \Lambda_c^-
ightarrow ar{\Lambda}\pi^-\pi^-, & \Lambda_c^-
ightarrow ar{\Lambda}\pi^-\pi^+\pi^-, \ \Lambda_c^-
ightarrow ar{\Sigma}^0\pi^-, & \Lambda_c^-
ightarrow ar{\Sigma}^-\pi^0 & \text{and} & \Lambda_c^-
ightarrow ar{\Sigma}^-\pi^+\pi^- \end{array}$$

where the intermediate resonances K_S^0 , $\bar{\Lambda}$, $\bar{\Sigma}^0$, $\bar{\Sigma}^-$ and π^0 meson are reconstructed by

$$\begin{array}{lll} {\it K}_{S}^{0} \to \pi^{+}\pi^{-}, & 0.485 < {\it M}_{\pi^{+}\pi^{-}} < 0.510~{\rm GeV/c^{2}}; & {\it L}/\sigma_{\it L} > 0; \\ \bar{\Lambda} \to \bar{p}\pi^{+}, & 1.110 < {\it M}_{p\pi^{-}} < 1.121~{\rm GeV/c^{2}}; & {\it L}/\sigma_{\it L} > 0; \\ \bar{\Sigma}^{0} \to \gamma \bar{\Lambda} ~{\rm with} ~\bar{\Lambda} \to \bar{p}\pi^{+}, & 1.179 < {\it M}_{\gamma \Lambda} < 1.205~{\rm GeV/c^{2}}; \\ \bar{\Sigma}^{-} \to \bar{p}\pi^{0}, & 1.173 < {\it M}_{p\pi^{0}} < 1.200~{\rm GeV/c^{2}}; \\ \pi^{0} \to \gamma \gamma. & 0.10 < {\it M}_{\gamma \gamma} < 0.15~{\rm GeV/c^{2}}; ~1\text{-C Kinematic Fit } \chi_{\pi^{0} \to \gamma \gamma} < 20; \\ \end{array}$$

Singly tagged $\overline{\Lambda}_{c}^{-}$

The ST $\overline{\Lambda}_c^-$ signal candidates are identified using the variable of beam constrained mass ,

$$M_{
m bc} = \sqrt{E_{
m beam}^2 - |\overrightarrow{p}_{\Lambda_c^-}|^2}$$

where E_{beam} is the beam energy, and $\vec{p}_{\Lambda_c^-}$ is the momentum of the $\overline{\Lambda}_c^-$ candidate.

■ To improve the signal purity, the energy difference

$$\Delta E = E_{\text{beam}} - E_{\Lambda_c}$$

for each candidate is required to be within approximately $\pm 3\sigma_{\Delta^E}$ around the ΔE peak, where σ_{Δ^E} is the ΔE resolution. And $E_{\Lambda_c^-}$ is the reconstructed $\overline{\Lambda}_c^-$ energy.

TABLE I. ST modes, ΔE requirements and ST yields $N_{\bar{\Lambda}_c}$ in data. The errors are statistical only.

Mode	$\Delta E \text{ (GeV)}$	$N_{ar{\Lambda}_{\overline{c}}}$
$\bar{p}K_S^0$	[-0.025, 0.028]	1066 ± 33
$\bar{p}K^{+}\pi^{-}$	[-0.019, 0.023]	5692 ± 88
$\bar{p}K_S^0\pi^0$	[-0.035, 0.049]	593 ± 41
$\bar{p}K^{+}\pi^{-}\pi^{0}$	[-0.044, 0.052]	1547 ± 61
$\bar{p}K_S^0\pi^+\pi^-$	[-0.029, 0.032]	516 ± 34
$\bar{\Lambda}\pi^-$	[-0.033, 0.035]	593 ± 25
$\bar{\Lambda}\pi^-\pi^0$	[-0.037, 0.052]	1864 ± 56
$ar{\Lambda}\pi^-\pi^+\pi^-$	[-0.028, 0.030]	674 ± 36
$ar{\Sigma}^0\pi^-$	[-0.029, 0.032]	532 ± 30
$\bar{\Sigma}^-\pi^0$	[-0.038, 0.062]	329 ± 28
$ar{\Sigma}^-\pi^+\pi^-$	[-0.049, 0.054]	1009 ± 57
All tags		14415 ± 159

The yield of each tag mode is obtained from fits to the M_{bc} distributions in the signal region.

Search for $\Lambda_c^+ \to n K_S^0 \pi^+$

Candidates for the decay $\Lambda_c^+ \to n K_S^0 \pi^+$ are selected from the remaining tracks recoiling against the ST $\overline{\Lambda}_c^-$ candidates.

□pion reconstruction:

A pion with charge >0 is selected.

- $\square K_S^0$ reconstruction:
 - 1. At least two oppositely charged tracks are reconstructed in recoil side, one is assumed as π^+ and the other one is assumed as π^- ;
 - 2. no |Vxy| cut, no |Vz| cut;
 - 3. $L/\sigma L > 0$;

Search for $\Lambda_c^+ \to n K_S^0 \pi^+$

 $M_{\rm miss}^2$ is calculated to extract the information of missing neutron

$$M_{\mathrm{miss}}^2 = (p_{\Lambda_c^+} - p_{K_S^0} - p_{\pi^+})^2 = E_{\mathrm{miss}}^2 - c^2 |\overrightarrow{p}_{\mathrm{miss}}|^2.$$

In analysis,

$$egin{align} E_{
m miss} &= E_{
m beam} - E_{\mathcal{K}_{\mathcal{S}}^0} - E_{\pi^+}, \ & ec{p}_{
m miss} &= ec{p}_{\Lambda_c^+} - ec{p}_{\mathcal{K}_{\mathcal{S}}^0} - ec{p}_{\pi^+}, \ & ec{p}_{\Lambda_c^+} &= -\hat{p}_{
m tag} \sqrt{E_{
m beam}^2 - m_{\Lambda_c^+}^2}, \ \end{aligned}$$

where \hat{p}_{tag} is the direction of the momentum of singly tagged Λ_c^- ;

Fit

A two-dimensional unbinned maximum likelihood fit to the $M_{\rm miss}^2$ and $M_{\pi^+\pi^-}$ is performed.

$$N_{nK_S^0\pi^+}^{\text{obs}} = 83.2 \pm 10.6$$

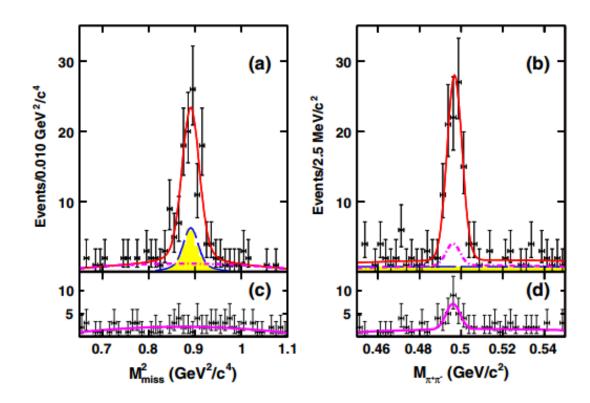


FIG. 2. Simultaneous fit to $M_{\rm miss}^2$ and $M_{\pi^+\pi^-}$ of events in (a),(b) the $\bar{\Lambda}_c^-$ signal region and (c),(d) sideband regions. Data are shown as the dots with error bars. The long-dashed lines (blue) show the Λ_c^+ backgrounds while the dot-dashed curves (pink) show the non- Λ_c^+ backgrounds. The (red) solid curves show the total fit. The (yellow) shaded area show the MC simulated backgrounds from Λ_c^+ decay.

Summary

- This is the first direct measurement of a Λ_c^+ decay involving the neutron in the final state since the discovery of the Λ_c^+ more than 30 years ago.
- Quoting $\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)$ and $\mathcal{B}(\Lambda_c^+ \to pK_S^0\pi^0)$, the amplitudes of the above three decay processes satisfy the triangle relation and validate the isospin symmetry.
- ☐ The analysis method used in this work can also be extended to study more decay modes involving a neutron.