Design and construction of the BESIII detector

IHEP Suyu Xiao 2017/05/05

1. Overview

Focusing on τ -charm results: J/ Ψ , Ψ (2S), τ , D, D_S (particles produced at or near the threshold)

2. BEPC II storage ring

Completed in July of 2008, data taking started in March of 2009, the instantaneous luminosity reached 0.32*10³³cm⁻²s⁻¹ at a center-of-mass energy of 2*1.89GeV

electron injection rate: 200mA/min

positron injection rate: 50mA/min

collide at interaction point with a horizontal crossing angle of ±11mrad

Table 1

BEPCII design parameters compared with those of BEPC.

Parameters	BEPCII	BEPC
Center of mass energy (GeV)	2-4.6	2-5
Circumference (m)	237.5	240.4
Number of rings	2	1
RF frequency f_{rf} (MHz)	499.8	199.5
Peak luminosity at $2 \times 1.89 \text{ GeV} (\text{cm}^{-2} \text{ s}^{-1})$	$\sim 10^{33}$	~1031
Number of bunches	2 × 93	2×1
Beam current (A)	2×0.91	2×0.035
Bunch spacing (m/ns)	2.4/8	
Bunch length (σ_z ; cm)	1.5	~5
Bunch width (σ_x ; μ m)	~380	~840
Bunch height (σ_{y} ; μ m)	~5.7	~37
Relative energy spread	5×10^{-4}	5×10^{-4}
Crossing angle (mrad)	±11	0

3. Event rates and final states

In typical hadronic final states, the most probable momentum of charged particles produced is approximately 0.3 GeV/c, an overwhelming majority of particles have momentum below 1GeV/c, and the most probable energy of photons is about 100MeV. The average multiplicity is on the order of four for charged particles and photons in final states.

4. **BESIII components**

Fig. 1. Schematic drawing of the BESIII detector.

Table 3

°S

Detector parameters and performance comparison between BESIII and BESII.

Subsystem	BESIII	BESII
MDC		
Single wire $\sigma_{r\phi}$ (µm)	130	250
$\sigma_{\rm p}/p \ (1 \ {\rm GeV/c}) \ (\%)$	0.5	2.4
$\sigma (dE/dx)$ (%)	6	8.5
EMC		
$\sigma_E E (1 \text{GeV}) (\%)$	2.5	22
Position resolution (1GeV) (cm)	0.6	3
TOF		
σ_T (ps)		
Barrel	100	180
End cap	110	350
Muon		
No. of layers (barrel/end cap)	9/8	3
Cut-off momentum (MeV/c)	0.4	0.5
Solenoid magnet field (T)	1.0	0.4
$\Delta \Omega / 4\pi$	93%	80% (used)

5. Luminosity determination

The luminosity will be determined based on the three main QED processes $e^+e^-\rightarrow e^+e^-$, $\mu^+\mu^-$ and $\gamma\gamma$ using the entire BESIII detector.

luminosity measurements

- a crude determination of the luminosity made in the real time L3 event filtering process using mainly the end cap EMC
- offline data analysis to further eliminate backgrounds and to apply more detailed corrections for detector efficiencies and other effects determined from Monte Carlo simulation
- trigger efficiency determinations
- radiative correctionsMonte Carlo simulations
 - requirements to eliminate backgrounds

uncertainties

