CLHCP 2017 at Nanjing (2017.12.22-24)

ATLAS Phase II Update

- Inner tracking: silicon strip detector ----Xin Shi et al
- Thin gap muon trigger RPC ----Yongjie Sun

Yuzhen Yang 2017.12.29

Special Topic

LHC Point 1: The ATLAS Experiment

LHC to HL-LHC

ATLAS Phase-II upgrade

ATLAS ITk Upgrade

 ATLAS Detector upgrade for the LHC high luminosity upgrade, all silicon tracking device

Layer	Radius [mm]	Maximal Fluence [n _{eq} /cm ²]	Maximal Dose [MRad]
Strips			
Long Strips	762	4.2×10 ¹⁴	10.7
Short Strips	405	8.1×10^{14}	35.7
End-cap	385	1.2×10^{15}	50.4
Pixels			
Layer 0	39	2.25×10^{16}	1710
Layer 1	75	0.82×10^{16}	715
Layer 2	155	0.25×10^{16}	148
Layer 3	213	0.12×10^{16}	96
Layer 4	271	0.12×10^{16}	61
End-cap	80	0.67×10^{16}	687

ITk Silicon Strip Detector Concept

Stave/Petal + Mechanics Supported Silicon Modules

Assembly and tests of barrel modules

Produce 50 working modules during pre-production

Silicon Strip Detector Module

 Silicon Sensor + Hybrid PCB (with Readout ASICs and control chips) + Power board + Glue and Wire-bonds

Quality Control

 Based on the prototype study, along with the current ATLAS SCT detector experience, improve the quality control (QC) of module production process

Control board QC

Detector Module QC

R&D on high performance RPC for the ATLAS Phase-II upgrade

Yongjie Sun

State Key Laboratory of Particle detection and electronics

Department of Modern Physics, USTC

Current ATLAS RPC muon trigger system

6 layers RPC (BM and BO), measure η&φ position on each layer.

OUTER LAYER (BO) for High p_T trigger

MIDDLE LAYER (BM) for Low p_T trigger

NO RPC on INNER LAYER (BI))

The main problems of current RPC

➤ Longevity:

- Designed for work under 1×10³⁴ cm⁻²s⁻¹@14TeV for 10 years, corresponding to integrate charge of 0.3 C/cm²
- Reach the life time at HL-LHC
- Can only work under lower voltage with detection efficiency lost of 15%-35%

The rate capability:

 Under HL-LHC, the extrapolated rate on RPC will be an order of magnitude higher, ~300Hz/cm²

➤ Basic solution:

- Add 3 BI RPC layers
- Rate: ~ kHz/cm², work 10 years for HL-LHC
- With higher spatial and time resolution for muon tracking and bunch crossing ID
- Close most of the acceptance holes

RPC1

(BI)

The basic requirements

- Higher rate capability: ~ kHz/cm²
- Longer longevity: 10 years of HL-LHC
- Higher spatial resolution: ~ mm
- Higher time resolution: ~0.5ns

Current RPC detector:

- 2 mm gas gap, with avalanche mode → 1 mm
- Work voltage: 4.8 kV/mm → ~2.7 kV
- Charge: 30 pC/count
- Rate: 100 Hz/cm²
- Time resolution: 1.1 ns \rightarrow 0.5 ns
- Strip pitch: 26-35 mm
- FEE: GaAs technology → Si BJT → SiGe
- Gas component: Freon, Iso-butane, SF6

Main challenges

- More sensitive, high signal-to-noise ratio, fast, low power consumption Front End Electronics
- New materials for a thinner and more rigid chamber structure
- Increasing the signal-to-noise ratio by optimizing the gas gap and readout panel structure
- Optimizing the detector parameters for maximizing spatial and time resolution, thus momentum resolution, and track-to-track separation.
- Looking for new environment friendly gas mixture.