

R&D on high performance RPC for the ATLAS Phase-II upgrade

Yongjie Sun

State Key Laboratory of Particle detection and electronics

Department of Modern Physics, USTC

outline

- ➤ ATLAS Phase-II Muon Spectrometer upgrade
- > RPC trigger detector
 - ✓ Requirements on performance
 - ✓ The main challenges
 - ✓ R&D on thin gap RPC
 - ✓ Current progresses
- >Summary

LHC to HL-LHC

ATLAS Phase-II upgrade

Current ATLAS RPC muon trigger system

PET foil (+glue)

Gas gap with spacer

- 6 layers RPC (BM and BO), measure η&φ position on each layer.
- **OUTER LAYER (BO) for High p**_T trigger
- MIDDLE LAYER (BM) for Low p_⊤ trigger
- NO RPC on INNER LAYER (BI))

The main problems of current RPC

1958 University of the control of th

Longevity:

- Designed for work under 1×10^{34} cm⁻²s⁻¹@14TeV for 10 years, corresponding to integrate charge of 0.3 C/cm²
- Reach the life time at HL-LHC
- Can only work under lower voltage with detection efficiency lost of 15%-35%

The rate capability:

 Under HL-LHC, the extrapolated rate on RPC will be an order of magnitude higher, ~300Hz/cm²

Basic solution:

- Add 3 BI RPC layers
- Rate: ~ kHz/cm², work 10 years for HL-LHC
- With higher spatial and time resolution
 for muon tracking and bunch crossing ID
- Close most of the acceptance holes

The basic requirements

- Higher rate capability: ~ kHz/cm²
- Longer longevity: 10 years of HL-LHC
- Higher spatial resolution: ~ mm
- Higher time resolution: ~0.5ns

Current RPC detector:

2 mm gas gap, with avalanche mode

 \rightarrow 1 mm

Work voltage: 4.8 kV/mm

 \rightarrow ~2.7 kV

- Charge: 30 pC/count
- Rate: 100 Hz/cm²
- Time resolution: 1.1 ns

 \rightarrow 0.5 ns

- Strip pitch: 26-35 mm
- FEE: GaAs technology → Si BJT → SiGe
- Gas component: Freon, Iso-butane, SF6

Main challenges

- More sensitive, high signal-to-noise ratio, fast, low power consumption Front End Electronics
- New materials for a thinner and more rigid chamber structure
- Increasing the signal-to-noise ratio by optimizing the gas gap and readout panel structure
- Optimizing the detector parameters for maximizing spatial and time resolution, thus momentum resolution, and trackto-track separation.
- Looking for new environment friendly gas mixture.

R&D on thin gap RPC

- Supported by the MOST National key research and development program, USTC, SDU and SJTU started the R&D on thin gap RPC for ATLAS Phase-II upgrade.
- Mainly focus on:
 - New electrode material, gas gap structure, readout material and structure, working conditions.
 - Join the FEE and readout electronics design.
 - Simulation, design and test RPC prototypes, achieve the required performances.
 - Built and test real size RPC detector.
 - Establish the assembly and test procedure, quality control and assurance, get ready for the mass production

Main progresses

- Thinner gas gap, thinner structure and very sensitive FEE introduces many problems for RPC operation.
 - The gas ionization and avalanche process
 - The signal induction
 - Signal transport
 - Impedance matching
 - Shielding and GND connection
 - Gas flow and mechanical problems
- Simulation work already started together with the test of the BIS78 prototypes.

Simulation on cross-talk

- Join the BIS78 assembly, beam test and data analysis.
- Simulated the cross-talk observed from test results.

Simulation of signal propagation in RPC for Atlas Phase II Upgrade --Xiangyu XIE

Relation between Cross Talk and propagation distance and HV layer resistivity

Prototype assembly and test

- BIS78 similar gas gaps has been built with the same material, same technology.
- RPC counter will be built for performance test.
- ➤ The idea is to start from the BIS78-like technology and get comparable results, then start our own:
 - Readout pattern R&D: material, new design...
 - New gas mixture performance test.
 - Optimize the assembling, shielding, mechanical structure....
 - Built real size detector for phase-II upgrade

Summary

- Supported by MOST, we take part in the ATLAS Phase-II muon trigger RPC upgrade.
- Following the pilot work of Phase-I BIS78 upgrade, the simulation and prototype assembly has already started.
- We will deeply explore any possibilities to extend the potential of RPC, fulfill the requirements of the upgrade.
- Take the responsibility and make real contributions to the ATLAS collaboration.

Thank you.