Observation of $e^+e^- \rightarrow \gamma X(3872)$ at BESIII

Yumo Su May. 19th ,2017

Outline

Motivation Reconstruction Some distributions of observable quantity in data Fit Results

Motivation

• Until now, the X(3872) was only observed in B meson decays and hadron collisions. Since the X(3872) is 1^{++} state, it should be able to be produced through the radiative transition of an excited vector charmonium or charmoniumlike states such as a φ or Y.

Reconstruction

tection efficiency, and estimate backgrounds. For the signal process, we generate $e^+e^- \rightarrow \gamma X(3872)$, with $X(3872) \rightarrow$ $\pi^+\pi^-J/\psi$ at each CM energy. Initial state radiation (ISR) is simulated with KKMC [19], where the Born cross section of $e^+e^- \rightarrow \gamma X(3872)$ between 3.90 and 4.42 GeV is assumed to follow the $e^+e^- \to \pi^+\pi^- J/\psi$ line-shape [11]. The maximum ISR photon energy corresponds to the 3.9 GeV/c^2 production threshold of the $\gamma X(3872)$ system. We generate $X(3872) \rightarrow \rho^0 J/\psi$ MC events with $\rho^0 \rightarrow \pi^+ \pi^-$ to model the $\pi^+\pi^-$ system and determine the detection efficiency [9]. Here the ρ^0 and J/ψ are assumed to be in a relative S-wave. Final State Radiation (FSR) is handled with PHOTOS [20].

Some distributions of observable quantity in data

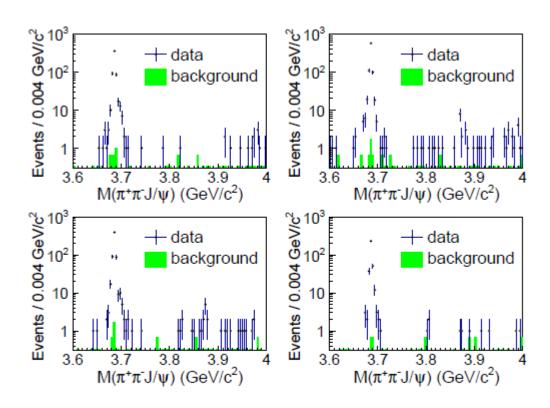


FIG. 1: The $\pi^+\pi^-J/\psi$ invariant mass distributions at $\sqrt{s}=4.009$ (top left), 4.229 (top right), 4.260 (bottom left), and 4.360 GeV (bottom right). Dots with error bars are data, the green shaded histograms are normalized J/ψ sideband events.

 $M(\pi^+\pi^-J/\psi) = M(\pi^+\pi^-\ell^+\ell^-) - M(\ell^+\ell^-) + m(J/\psi)$ is used to reduce the resolution effect of the lepton pairs, and $m(J/\psi)$ is the nominal mass of J/ψ [13]. There is a huge $e^+e^- \to \gamma_{\rm ISR}\psi(3686)$ signal at each CM energy data set. In addition, there is a narrow peak around 3872 MeV/ c^2 in the 4.229 and 4.260 GeV data samples, while there is no significant signal at the other energies.

Fit

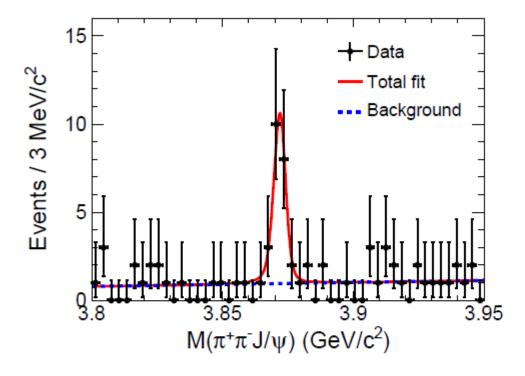


FIG. 2: Fit of the $M(\pi^+\pi^-J/\psi)$ distribution with a MC simulated histogram convolved with a Gaussian function for signal and a linear background function. Dots with error bars are data, the red curve shows the total fit result, while the blue dashed curve shows the background contribution.

The $M(\pi^+\pi^-J/\psi)$ distribution (summed over all CM energy data sets) is fitted to determine the mass and X(3872) yield. We use a MC simulated signal histogram convolved with a Gaussian function which represents the resolution difference between data and MC simulation as the signal shape, and a linear function for the background. The ISR $\psi(3686)$

Results

TABLE I: The number of X(3872) events $(N^{\rm obs})$, radiative correction factor $(1+\delta)$, detection efficiency (ϵ) , measured Born cross section $\sigma^B[e^+e^- \to \gamma X(3872)]$ times $\mathcal{B}[X(3872) \to \pi^+\pi^- J/\psi]$ ($\sigma^B \cdot \mathcal{B}$, where the first uncertainties are statistical and the second systematic), measured ISR $\psi(3686)$ cross section ($\sigma^{\rm ISR}$, where the first uncertainties are statistical and the second systematic), and predicted ISR $\psi(3686)$ cross section ($\sigma^{\rm QED}$ with uncertainties from resonant parameters) from QED [23] using resonant parameters in PDG [13] as input at different energies. For 4.009 GeV and 4.360 GeV, the upper limits of observed events ($N^{\rm up}$) and cross section times branching fraction ($\sigma^{\rm up} \cdot \mathcal{B}$) are given at the 90% C.L.

\sqrt{s} (GeV)	$N^{ m obs}$	N^{up}	€ (%)	$1 + \delta$	$\sigma^B \cdot \mathcal{B}$ (pb)	$\sigma^{\mathrm{up}}\cdot\mathcal{B}$ (pb)	σ^{ISR} (pb)	$\sigma^{ m QED}$ (pb)
4.009	0.0 ± 0.5	< 1.4	28.7	0.861	$0.00 \pm 0.04 \pm 0.01$	< 0.11	$719 \pm 30 \pm 47$	735 ± 13
4.229	9.6 ± 3.1	-	34.4	0.799	$0.27 \pm 0.09 \pm 0.02$	-	$404\pm14\pm27$	408 ± 7
4.260	8.7 ± 3.0	-	33.1	0.814	$0.33 \pm 0.12 \pm 0.02$	-	$378\pm16\pm25$	382 ± 7
4.360	1.7 ± 1.4	< 5.1	23.2	1.023	$0.11 \pm 0.09 \pm 0.01$	< 0.36	$308\pm17\pm20$	316 ± 5