"New solar axion search using the CERN Axion Solar Telescope with ${ }^{4} \mathrm{He}$ filling"

M. Arik, et al. (CAST Collaboration), PRD 92, 021101(R) (2015)

Contents

- Motivation -- brief introduction of axion
- CAST experiment
- Detector -- mainly MICROMEGAS detector
- Observation \& Results
- future project ?

QCD Lagrangian

$$
\begin{aligned}
& L_{Q C D}=\bar{\varphi}\left(i \gamma_{\mu} D^{\mu}-m\right) \varphi-1 / 4 \cdot F_{\mu \nu}^{i} F^{i \mu \nu} \quad \varphi={ }^{T}\left(\varphi_{\text {red }}, \varphi_{\text {green }}, \varphi_{\text {blue }}\right) \\
& D^{\mu}=\partial_{\mu}-i g_{s} A_{\mu}^{i} \frac{\sigma^{i}}{2} \\
& F_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+g_{s} f^{a b c} A_{\mu}^{b} A_{v}^{c}
\end{aligned}
$$

Yang-Mills gauge theory based on the SU(3) color symmetry

Anomaly

 Here, the case of QED with simple equations are shown as a modelLagrangian (classical) level

$$
\begin{aligned}
& J_{\mu}=(e) \bar{\varphi} \gamma_{\mu} \varphi: \text { polar vector } \\
& \partial^{\mu} J_{\mu}=\left(\partial^{\mu} \bar{\varphi}\right) \gamma_{\mu} \varphi+\bar{\varphi} \gamma_{\mu} \partial^{\mu} \varphi=0 \quad \begin{array}{l}
\text { Using dirac }\left(i \gamma_{\mu} \partial^{\mu}-m\right) \varphi=0 \\
J_{\mu}{ }^{A}=(e) \bar{\varphi} \gamma_{\mu} \gamma_{5} \varphi: \text { axial vector }
\end{array}
\end{aligned}
$$

$$
\partial^{\mu} J_{\mu}^{A}=2 i m \bar{\varphi} \gamma_{5} \varphi=0(\text { if } m=0) \quad \square \text { "chiral symmetry" }
$$

However, if the calculation is done with quantum level, such as using path integral,

$$
\partial^{\mu} J_{\mu}{ }^{A}=2 i m \bar{\varphi} \gamma_{5} \varphi-\frac{e^{2}}{16 \pi^{2}} \varepsilon^{\mu \nu \alpha \beta} F_{\mu \nu} F_{\alpha \beta} \neq 0(\text { evenif } m=0)
$$

Modification of QCD lagrangian

- θ vacuum and "instanton"
-- theoretical discussion arising at pure Yang-Mils gage theory
- Anomaly term from chiral transformation
-- one of the supporting pieces regarding the θ vacuum

$$
\begin{aligned}
& L_{e f f}=L_{Q C D}+\underline{L_{\theta}} \\
& L_{Q C D}=\bar{\varphi}\left(i \gamma_{\mu} D^{\mu}-m\right) \varphi-1 / 4 \cdot F_{\mu \nu}^{i} F^{i \mu \nu} \\
& L_{\theta}=\theta \frac{g^{2}}{32 \pi^{2}} \varepsilon^{\mu \nu \alpha \beta} F_{\mu \nu}^{i} F_{\alpha \beta}^{i}
\end{aligned}
$$

From "The Strong CP Problem and Axions" R.D. Peccei and elsewhere
The term q is unknown parameter, and L_{θ} breaks CP symmetry .

Neutron EDM (electrical dipole moment)

parity violation

Fig 5(a) from Jihn.E. Kim and G. Carosi, Review of Modern Phys., Vol. 82 (2010)

$$
\begin{aligned}
& \left|d_{N}^{\mathrm{exp}}\right|<2.9 \times 10^{-26} \mathrm{e} \cdot \mathrm{~cm} \quad \text { Baker, et al., PRL 97, } 131801 \text { (2006) } \\
& d_{N}^{\text {model }} \simeq \bar{\theta} \cdot\left(6 \times 10^{-17}\right) \mathrm{e} \cdot \mathrm{~cm} \quad \square \bar{\theta}<10^{-9}
\end{aligned}
$$

If there is CP-violating term, NEDM can be accompanied. But NOT observed so far.

Axion

QCD axion as dark matter candidate

- Motivated by Pecccei-Quinn mechanism Peccei and Quinn (1977) as a solution of the strong CP problem
- Spontaneous breaking of global $\mathrm{U}(\mathrm{I})$ Peccei-Quinn (PQ) symmetry at a scale $F_{a} \simeq 10^{8-11} \mathrm{GeV}$ "axion decay constant"
- Nambu-Goldstone theorem
\rightarrow emergence of the (massless) particle \equiv axion
Weinberg (1978), Wilczek (1978)
- Axion has a small mass (QCD effect) \rightarrow pseudo-Nambu-Golstone boson

$$
\begin{array}{r}
m_{a} \sim \frac{\Lambda_{\mathrm{QCD}}^{2}}{F_{a}} \sim 6 \times 10^{-5} \mathrm{eV}\left(\frac{10^{11} \mathrm{GeV}}{F_{a}}\right) \\
\Lambda_{\mathrm{QCD}} \simeq \mathcal{O}(100) \mathrm{MeV}
\end{array}
$$

- Tiny coupling with matter + non-thermal production
\rightarrow good candidate of cold dark matter

$$
L_{e f f}=L_{Q C D}+L_{\theta}+L_{a x i o n} \sim L_{Q C D}
$$

Solar Axions

- Solar axions produced by photon-toaxion conversion of the solar plasma photons in the solar core

$>$ Solar axion flux [van Bibber PRD 39 (89)]
[CAST JCAP 04(2007)010]

- Since the interaction of axion-photon is predicted as

$$
L_{a \gamma \gamma} \propto g_{a \gamma \gamma} a \cdot \varepsilon^{\mu \nu \alpha \beta} F_{\mu \nu} F_{\alpha \beta}=g_{a \gamma \gamma} a \cdot \underline{\vec{E} \cdot \vec{B}}
$$

the magnetic field is set perpendicular toward Sun

- X-ray photon (mean energy is $\sim 4 k e V$) can be observed
-- Flux @ the earth $\sim 10^{11} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{keV}^{-1}$ or $\sim 10^{12} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

- Conversion probability of axions into photons at a length L

$$
\begin{aligned}
P_{a \rightarrow \gamma} & =\left|\left\langle A_{\|}(z) \mid a(0)\right\rangle\right|^{2}=\left(\frac{B g_{a \gamma}}{2}\right)^{2} \frac{1}{q^{2}+\Gamma^{2} / 4}\left[1+\mathrm{e}^{-\Gamma L}-2 \mathrm{e}^{-\Gamma L / 2} \cos (q L)\right] \\
& =\left(\frac{B L g_{a \gamma}}{2}\right)^{2}\left(\frac{\sin \left(\frac{q L}{2}\right)}{\left(\frac{q L}{2}\right)}\right)^{2} . \quad \text { where, } \quad q=\left|p_{a}-p_{\gamma}\right| \sim\left|\frac{m_{\gamma}^{2}-m_{a}^{2}}{2 E_{a}}\right|
\end{aligned}
$$

If photon goes through dielectric substance (gas), v<c
$\rightarrow \quad m_{\gamma}{ }^{\prime}>0$ and higher m_{a} can be searched

CAST experiment and recent result

CERN Axion Solar Telescope (CAST)

Helioscope : tracking the Sun (solar core)
Long LHC prototype superconducting magnet :
(length $=9.26 \mathrm{~m}$, B field up to 9 T)
Location : above ground at Point 8 of LHC -- near LHCb

Drawing of the CAST magnet

Rotation range is ± 8 deg. (vertical) \& ± 40 deg. (horizontal), It can point the Sun in the morning \& evening \rightarrow both side equip detector, "Sunset photon detectors" \& "Sunrise photon detectors"

LHC dipole magnet

LHC DIPOLE : STANDARD CROSS-SECTION

Current [A]	Magnetic field [T]
0	0
4988	3.40
8981	6.12
10977	7.46
12000	8.13
12808	8.66
13330	9.00

Orientation of the magnetic field

CAST Observation Mode (history)

Table 4.1. The Run History of CAST.

Year	Phase	Sensitivity Range
$2000-2003$	Commissioning	
$2003-2004$	Phase I(Vacuum)	$<0.02 \mathrm{eV}$
$2006-2007$	Phase II $\left({ }^{4} \mathrm{He}\right)$	$0.02 \mathrm{eV}-0.4 \mathrm{eV}$
$2008-2011$	Phase II $\left({ }^{3} \mathrm{He}\right)$	$0.4 \mathrm{eV}-1.15 \mathrm{eV}$
2012	Phase II $\left({ }^{4} \mathrm{He}\right)$-Revisit	$0.02 \mathrm{eV}-0.4 \mathrm{eV}$

Inside of the two cold bores (diameter of 43 mm) was vacuum in Phase I. or ${ }^{4} \mathrm{He} /{ }^{3} \mathrm{He}$ in Phase II.

MICROMEsh GAseous Structure (MICROMEGAS)

lons move to the mesh \rightarrow the signal is used for the estimation of the energy of the incoming particle, and generates a trigger electrons create signals on the strips \rightarrow the signal is used for the estimation of the position \& energy of the incoming particle

Photograph of MICROMEGAS for CAST

~1.5hour tracking

 (real data taking)

An example of 12 hours run schedule for Sunset Micromegas

Schematic drawing of the calibration system, viewed from backside of the detector

Reference : observation mode

Result I. Comparison of the number events between the background run and tracking run

FIG. 2 (color online). Comparison between background (blue bars) and tracking (red bars) spectra of one Micromegas detectors installed in the sunset side.

Background spectrum taken by CCD

Figure 6.33: In the background spectrum for the data obtained with the CCD detector during Phase II of CAST, characteristic photon lines originating from the materials of the detector and its close surroundings can be observed.

Result II. Exclusion regions in the $m_{a}-g_{a y}$ plane

Next generation axion helioscope @ CERN ?

IAXO (International Axion Observatory)

IAXO - Conceptual Design

- Large toroidal 8-coil magnet $\angle=\sim 20 \mathrm{~m}$
- 8 bores: 600 mm diameter each
- $8 x$-ray telescopes +8 detection systems

