Topic around Gravitational wave

JC38 sp. topic

General relativity and the prospect of gravitation waves by Einstien (1916)

688 Sitzung der physikalisch-mathematischen Klasse vom 22. Juni 1916

Näherungsweise Integration der Feldgleichungen der Gravitation.

Von A. Einstein.

Bei der Behandlung der meisten speziellen (nicht prinzipiellen) Probleme auf dem Gebiete der Gravitationstheorie kann man sich damit begnügen, die $g_{\mu\nu}$ in erster Näherung zu berechnen. Dabei bedient man sich mit Vorteil der imaginären Zeitvariable $x_i = it$ aus denselben Gründen wie in der speziellen Relativitätstheorie. Unter "erster Näherung" ist dabei verstanden, daß die durch die Gleichung

 $g_{\mu\nu} = -\delta_{\mu\nu} + \gamma_{\mu\nu} \qquad (1)$

definierten Größen γ_{uv} , welche linearen orthogonalen Transformationen gegenüber Tensorcharakter besitzen, gegen 1 als kleine Größen behandelt werden können, deren Quadrate und Produkte gegen die ersten Potenzen vernachlässigt werden dürfen. Dabei ist $\delta_{\mu\nu} = 1$ bzw. $\delta_{\mu\nu} = 0$, je nachdem $\mu = \nu$ oder $\mu = \nu$.

Wir werden zeigen, daß diese γ_w in analoger Weise berechnet werden können wie die retardierten Potentiale der Elektrodynamik. Daraus folgt dann zunächst, daß sich die Gravitationsfelder mit Lichtgeschwindigkeit ausbreiten. Wir werden im Anschluß an diese allgemeine Lösung die Gravitationswellen und deren Entstehungsweise untersuchen. Es hat sich gezeigt, daß die von mir vorgeschlagene Wahl des Bezugssystems gemäß der Bedingung $g = |g_{uv}| = -1$ für die Berechnung der Felder in erster Näherung nicht vorteilhaft ist. Ich wurde hierauf aufmerksam durch eine briefliche Mitteilung des Astronomen der Sertren, der fand, daß man durch eine andere Wahl des Bezugssystems zu einem einfacheren Ausdruck des Gravitationsfeldes eines ruhenden Massenpunktes gelangen kann, als ich ihn früher gegeben hatte¹. Ich stütze mich daher im folgenden auf die allgemein invarianten Feldgleichungen.

696 Sitzung der physikalisch-mathematischen Klasse vom 22. Juni 1916

Gleichwohl müßten die Atome zufolge der inneratomischen Elektronenbewegung nicht nur elektromagnetische, sondern auch Gravitationsenergie ausstrahlen, wenn auch in winzigem Betrage. Da dies in Wahrheit in der Natur nicht zutreffen dürfte, so scheint es, daß die Quantentheorie nicht nur die Maxwellsche Elektrodynamik, sondern auch die neue Gravitationstheorie wird modifizieren müssen.

Nachtrag. Das seltsame Ergebnis, daß Gravitationswellen existieren sollen, welche keine Energie transportieren (Typen a, b, c), klärt sieh in einfacher Weise auf. Es handelt sieh nämlich dabei nicht um »reale« Wellen, sondern um »scheinbare« Wellen, die darauf beruhen, daß als Bezugssystem ein wellenartig zitterndes Koordinatensystem benutzt wird. Dies sieht man bequem in folgender Weise ein. Wählt man das Koordinatensystem in gewohnter Weise von vornherein so. daß Vg = 1 ist, so erhält man statt (2) als Feldgleichungen bei Abwesenheit von Materie

$$\sum_{\alpha} \frac{\partial^2 \gamma_{\alpha\alpha}}{\partial x_{\alpha} \partial x_{\alpha}} + \sum_{\alpha} \frac{\partial^2 \gamma_{\alpha\alpha}}{\partial x_{\alpha} \partial x_{\alpha}} - \sum_{\alpha} \frac{\partial^2 \gamma_{\alpha}}{\partial x_{\alpha}^2} = 0 \,.$$

Führt man in diese Gleichungen direkt den Ansatz

 $\gamma_{av} = \alpha_{av} f(x_1 + ix_4)$

ein, so erhält man zwischen den Konstanten α_{a*} 10 Gleichungen, aus denen hervorgeht, daß nur α_{a*} , α_{33} und α_{33} von null verschieden sein können (wobei $\alpha_{a*} + \alpha_{33} = 0$). Bei dieser Wahl des Bezugssystems existieren also nur diejenigen Wellentypen (d, e, f), welche Energie transportieren. Die übrigen Wellentypen lassen sich also durch diese Koordinatenwahl wegschaffen; sie sind in dem angegebenen Simm nicht »wirkliehe« Wellen.

Wenn es also auch in dieser Untersuchung sich als bequem herausgestellt hat, die Wahl des Koordinatensystems von vornherein keiner Beschränkung zu unterwerfen, wenn es sich um die Berechnung der ersten Näherung handelt, so zeigt unser letztes Ergebnis doch, daß der Koordinatenwahl gemäß der Bedingung $\sqrt{-g} = 1$ eine tiefe physikalische Berechtigung zukommt.

Ausgegeben am 29. Juni.

¹ Sitzungsber, XLVII, 1915, S. 833.

Discovery of pulsar

The Nobel Prize in Physics 1974 Martin Ryle, Antony Hewish

Share this: f 💁 🗾 🕂 🔤 🛛 6

The Nobel Prize in Physics 1974

Sir Martin Ryle Prize share: 1/2

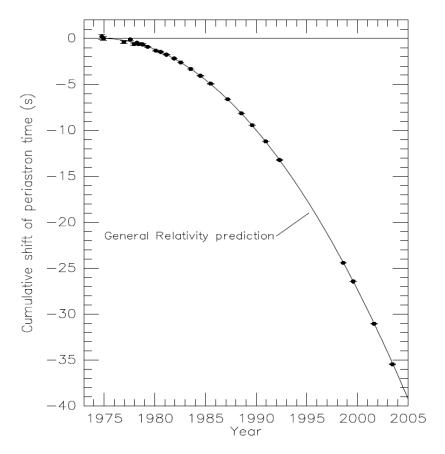
Antony Hewish Prize share: 1/2

The Nobel Prize in Physics 1974 was awarded jointly to Sir Martin Ryle and Antony Hewish "for their pioneering research in radio astrophysics: Ryle for his observations and inventions, in particular of the aperture synthesis technique, and Hewish for his decisive role in the discovery of pulsars"

discovery was in 1967

"for the discovery of a new type of pulsar, a discovery that has opened up new possibilities for the study of gravitation"

Russell A. Hulse


Joseph H. Taylor Jr.

discovery was in 1974

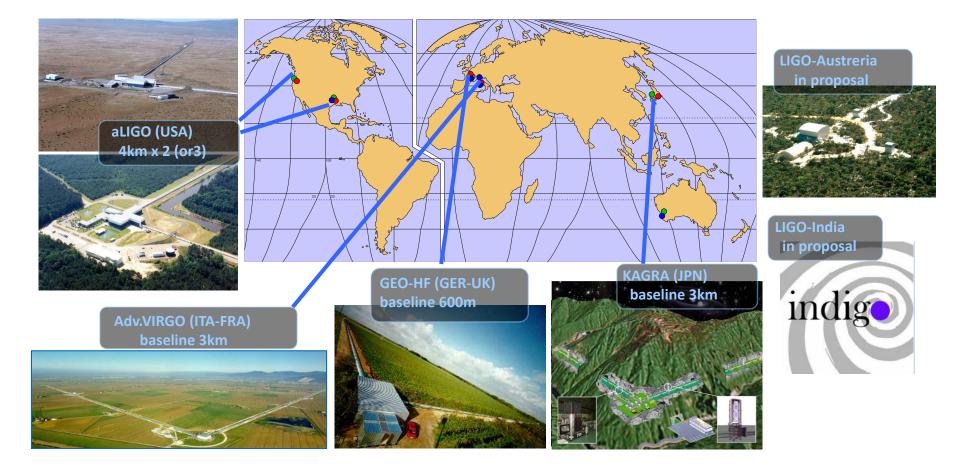
Relativistic Binary Pulsar B1913+16: Thirty Years of Observations and Analysis

1. Introduction

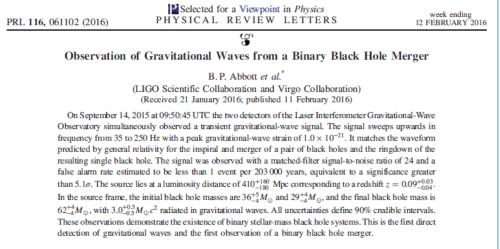
Pulsar B1913+16 was the first binary pulsar to be discovered (Hulse & Taylor 1975). Thirty years of subsequent observations have enabled us to measure numerous relativistic phenomena. We have used these measurements for funda-

J.M. Weisberg and J.H. Taylor, ASP Conference Series, 328 (2005) 25 (arXiv:astro-ph/0407149).

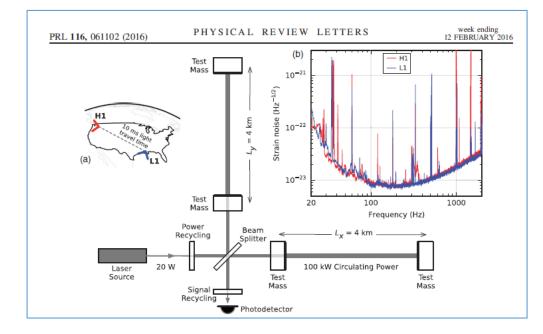
1st-generation detector

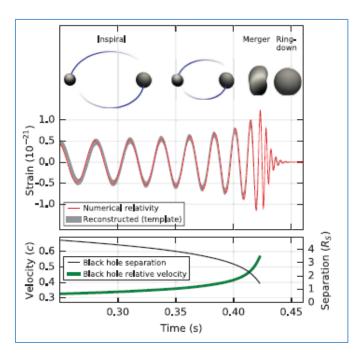

~2000, those big scale detectors have started their operation

Here, I can add remarks (from my impression after reading several reports)

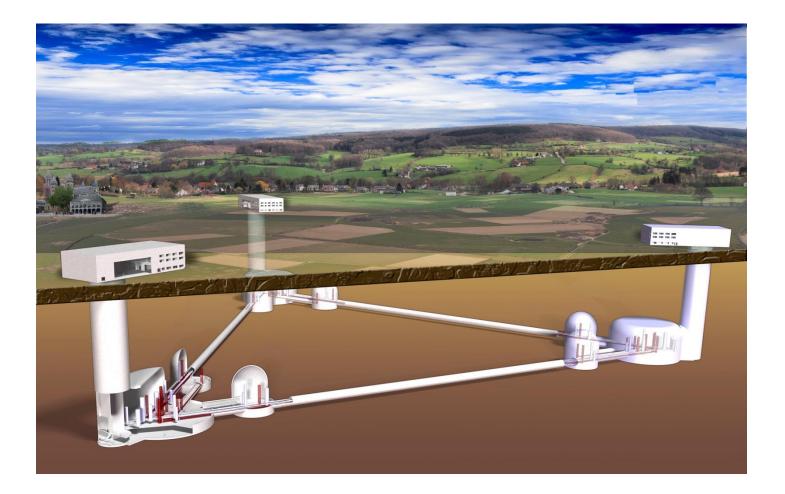

- From 90's , numerical (computing) method to calculate the Einstein equation shows progress
- From 05~07(?), treatment of black holes etc... can be well done for this topic.

2nd-generation detector




Sensitivity and the expected event rate is more than 1 order higher than 1st generation's .

Direct observation of GW (2016)


DOI: 10.1103/PhysRevLett.116.061102

3rd-generation detector : ET (Einstein Telescope)

~2026 ? . L ~10km, undergraound, w cold temperature

GW experiments proposed in China?

Chinese GW Mission

• Just after the LIGO's announcement of the first discovery in Feb. 2016, China decided to launch space GW mission.

Nature 531, 150 (March 2016)

NEWS IN FOCUS

Chinese gravitational-wave hunt hits crunch time

The pressure is on to choose between several proposals for space - based detectors.

BY DAVID CYRANCSKI

the wake of last month's historic US-led collaboration, a range of Chinese proposals to take studies of these ripples in gravitational waves. pace-time to the next level are attracting

fresh attention. The suggestions, from two separate teams,

pickup a wider range of gravitational radiation gravitational than ground-based observatories can The most mission, there ambitious plan could give China an edge over the leading European proposal to detect gravi-

Also under consideration are a possible collaboration between Chinese researchers and the European effort, and a cheaper Chinese plan. Although an Earth-based detector - the US Advanced Laser Interferometer Gravita-

tional-Wave Observatory (LIGO) - was the first to confirm a prediction made by Albert

150 | NATURE | VOL 531 | 10 MARCH 2016

CHINA'S CHOICES

gravitational-wave astronomy, such detectors can pick up only limited frequencies. Advanced LIGO compares laser light beamed along two ect, which is called eLISA (Evolved Laser detection of gravitational waves by a perpendicular detector arms to reveal whether

"If China decides are for space-based observatories that would to have a space should be an integrated one." metres or more. This

lasers can be positioned at these distances. Space-based detectors also avoid fluctuations in Earth's gravitational field, which can obscure signals.

pean Space Agency (ESA) is pursuing a spacebased gravitational-wave detector. One of the Einstein a century ago, launching the field of Chinese proposals, Taiji, meaning 'supreme

© 2016 Macmillan Publishers Limited. All rights rese

gle of three spacecraft in orbit around the Sun, which bounce lasers between each other Each LIGO arm measures 4 kilometres, but picking up the frequencies that are (see 'China's choices') The distance between eLISA's components is still under discussion, but current plans suggest it could be 2 million kilometres, says eLISA member Karsten richest in gravitational waves requires distances of hundreds Danzmann of the Max Planck Institute for of thousands of kilo-Gravitational Physics in Hanover, Germany

contry can achieve that on its own is unclear.

With such considerations in mind, the Euro-

rent schedule. "If Talji produces a Chinese version of eLISA, then it will bring China to the frontier," says Yanbei Chen, a gravitationalwave physicist at the California Institute of Technology in Pasadena, who works on LIGO. Gerhard Heinzel, an eLISA physicist also at the Max Planck Institute in Hanover, cautions against a single country going it alone on such a large project. It "is definitely too big — mainly in terms of cost but also resources in terms of

scientists and experts in the presence of competing science projects", he says. Taiji project leader Wu Yue-Liang, a particle physicist at the Chinese Academy of Sciences' Institute of Theoretical Physics in Beijing, esti-mates that the project will cost 14 billion yuan (US\$2 billion), roughly twice as much as ESA is budgeting for its gravitational-wave detector. SECOND STRING

altimate, is to create a more ambitious version

Like eLISA, Taiji would consist of a trian-

Taiji's spacecraft would be separated by 3 mil-

lion kilometres, giving the detector access to different frequencies. Taiji would launch in

2033, slipping in a year ahead of eLISA's cur-

Interferometer Space Antenna)

A second Chinese proposal, led by Luo Jun, a physicist at the Sun Yat-Sen University campus in Zhuhai, would lower the bar in terms of cost and resources. Called TanQin, a name that refers to the metaphor of nature playing a stringed instrument (a zither) in space, the project has three satellites that orbit Earth at a distance of about 150,000 kilometres from each other. It would cost 2 billion yuan, says Lun. ThanQin would be more limited than Taiji in terms of what it could detect: rather than acting is an observatory for the waves emitted by myr iad objects including black holes and neutron stars, it would mainly target a particular pair of orbiting white dwarf stars, called HM Cancri. TianOin's simplicity makes it cheaper and

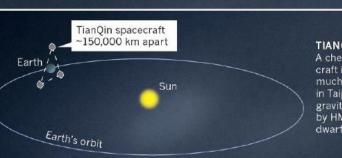
Ando Group Seminar (June 8th, 2017, Tokyo)

Chinese GW Missions

- ・Taiji (太極)
- * Slightly longer than LISA
- * Heliocentric orbit
- * Proposed by Chinese Academy of Science

CHINA'S CHOICES

Sun


Chinese researchers have proposed several ways to detect gravitational waves in space.

TAIJI

The most ambitious proposal uses three spacecraft in a triangle that orbits the Sun and detects Earth gravitational waves from a range of objects, like Europe's eLISA proposal. The spacecraft are farther apart than in eLISA, giving Taiji access to different frequencies.

・TianQin (天琴)

- * ~10 times shorter
- * Geocentric orbit
- * Proposed by Sun Yat-Sen University

Taiii spacecraft 3 million km apart

TIANOIN

eLISA spacecraft

~2 million km apart

A cheaper proposal puts three craft in orbit around Earth, and much closer to each other than in Taiji. This would target the gravitational waves emitted by HM Cancri, a pair of white dwarf stars.

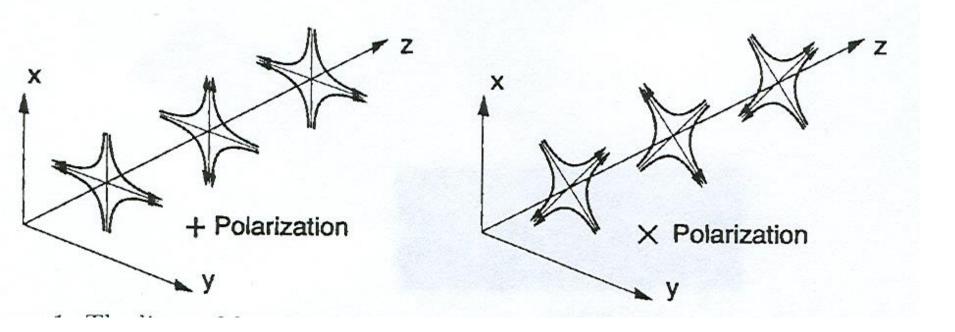
Earth's orbi

Paper for the JC 39

[Motivation for this selection]

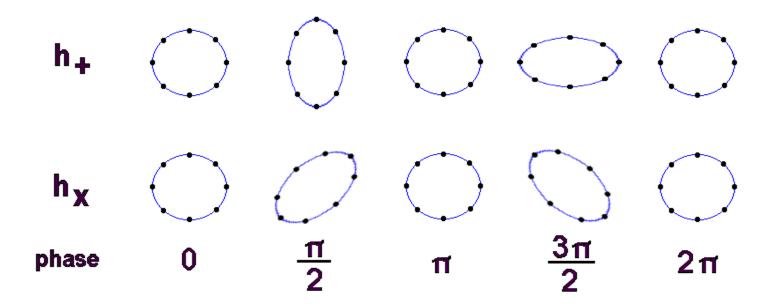
- (I want to know or) feel interesting how to distinguish from SM tt->h
- Can we connect it with future dark matter search ?

Search for heavy Higgs bosons A/H decaying to a top quark pair in *pp* collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector


ATLAS Collaboration

A search for heavy pseudoscalar (*A*) and scalar (*H*) Higgs bosons decaying into a top quark pair ($t\bar{t}$) has been performed with 20.3 fb⁻¹ of proton–proton collision data collected by the ATLAS experiment at the Large Hadron Collider at a center-of-mass energy of $\sqrt{s} = 8$ TeV. Interference effects between the signal process and Standard Model $t\bar{t}$ production, which are expected to distort the signal shape from a single peak to a peak–dip structure, are taken into account. No significant deviation from the Standard Model prediction is observed in the $t\bar{t}$ invariant mass spectrum in final states with an electron or muon, large missing transverse momentum, and at least four jets. The results are interpreted within the context of a type-II two-Higgs-doublet model. Exclusion limits on the signal strength are derived as a function of the mass $m_{A/H}$ and the ratio of the vacuum expectation values of the two Higgs fields, $\tan\beta$, for $m_{A/H} > 500$ GeV.

arXiv:1707.06025v1 [hep-ex] 19 Jul 2017


Quadrupole Field

- An oscillating dipole produces EM waves.
- A time varying mass-quadrupole produces GWs

Gravitational-waves

 GWs stretch and compress the space-time in two directions (polarizations): '+' and 'x'.

 h₊ & h_x are time-varying and their amplitude depend on the source that is emitting GWs.