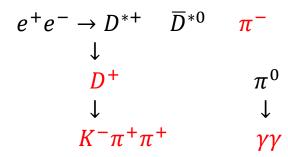
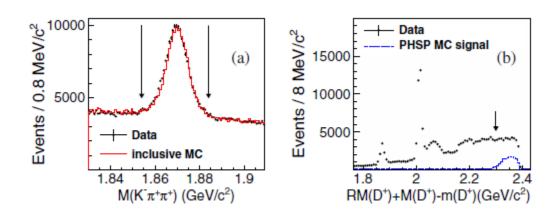
Observation of a Charged Charmoniumlike Structure in $e^+e^- \to (D^*\overline{D}^*)^{\pm}\pi^{\mp}$ at $\sqrt{s} = 4.26 \text{GeV}$

Yumo Su March. 10th, 2017

Outline


Motivation Reconstruction Some distributions of observable quantity in data Analysis Fit results

Motivation


- BESIII has observed a number of XYZ states. The masses of these states are slightly higher than the $D^*\overline{D}^*$ mass thresholds.
- Therefore, a search of Z_c candidates via their direct decays into $D^*\overline{D}^*$ pairs is strongly motivated.

reconstruction

unless explicitly stated. We use a partial reconstruction technique to identify the $D^{*+}\bar{D}^{*0}\pi^-$ final states. This technique requires that only the π^- from the primary decay (denoted as the *bachelor* π^-), the D^+ decaying from $D^{*+} \to D^+\pi^0$, and at least one soft π^0 from $D^{*+} \to D^+\pi^0$ or $\bar{D}^{*0} \to \bar{D}^0\pi^0$ decay are reconstructed. By reconstructing the D^+ particle, the charges of its mother particle D^{*+} and the bachelor π^- can be unambiguously identified.

Some distributions of observable quantity in data

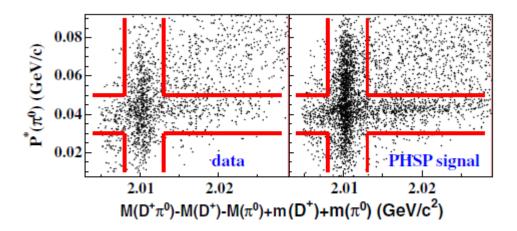
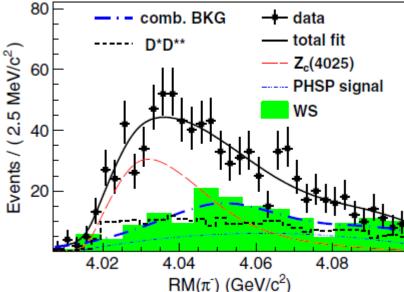



Figure 1(a) shows the $M(K^-\pi^+\pi^+)$ distribution where a D^+ peak is clearly evident. All combinations with invariant mass in the region (1.854, 1.884) GeV/ c^2 are identified as candidate D^+ mesons. The three peaks in the D^+ recoil


butions presented in this Letter. Backgrounds from the two-body process $e^+e^- \rightarrow D^{(*)}D^{(*)}$ are reduced by requiring $RM(D^+) + M(D^+) - m(D^+) > 2.3 \text{GeV}/c^2$.

 $D^{*+} \rightarrow D^+\pi^0$ or $\bar{D}^{*0} \rightarrow \bar{D}^0\pi^0$ decay. In the case where the π^0 is from $D^{*+} \rightarrow D^+\pi^0$, the $D^+\pi^0$ invariant mass peaks at the D^{*+} mass and a mass region requirement $2.008~{\rm GeV}/c^2 < M(D^+\pi^0) - M(D^+) + m(D^+) - M(\pi^0) + m(\pi^0) < 2.013~{\rm GeV}/c^2$ is used, corresponding to the vertical band in Fig. 2. In the case where the π^0 is from

 $\bar{D}^{*0} \to \bar{D}^0 \pi^0$, its momentum in the $D^+ \pi^-$ recoil system, $P^*(\pi^0)$, peaks at 43 MeV/c and a momentum requirement in the range (0.03, 0.05) GeV/c is applied, corresponding to the horizontal band in Fig. 2. As verified by MC

Fit

computation of the recoil mass. For other nonsignal processes that have the same final state, such as $e^+e^- \rightarrow D^+\pi^0\bar{D}^{*0}\pi^-$, $D^{*+}\bar{D}^0\pi^0\pi^-$ and $D^+\pi^0\bar{D}^0\pi^0\pi^-$, MC simulations of the phase space (PHSP) model do not produce narrow structures. The distribution of combinatorial backgrounds is estimated by combining a reconstructed D^+ with a pion of the wrong charge, referred to as wrong-sign (WS) events. The $D^+\pi^-$ recoil mass

In Fig. 3(c), a clear enhancement above the WS background is evident. To study the enhancement, the events of the $D^{*+}\bar{D}^{*0}\pi^{-}$ final states within the signal region (2.135, 2.175) GeV/ c^2 in Fig. 3(a) are selected and displayed in Fig. 4. The enhancement cannot be attributed to the PHSP $e^+e^- \rightarrow D^{*+}\bar{D}^{*0}\pi^-$ process. We simulate the

The observed enhancement is very close to the $m(D^{*+}) + m(\bar{D}^{*0})$ mass threshold. We assume that the enhancement is due to a particle, labeled as $Z_c^+(4025)$, and

Fit results

$$m(Z_c^+(4025)) = (4026.3 \pm 2.6) \text{ MeV}/c^2,$$

 $\Gamma(Z_c^+(4025)) = (24.8 \pm 5.6) \text{ MeV}.$

A goodness-of-fit test gives a χ^2 /d.o.f. = 30.4/33 = 0.92. The Z_c^+ (4025) signal is observed with a statistical significance of 13 σ , as determined by the ratio of the maximum likelihood value and the likelihood value for a fit with a null-signal hypothesis. When the systematic uncertainties are taken into account, the significance is evaluated to be 10σ .