Baryons strike back in BESIII

Evidence for a new 2g17virtual charmonium decay ?

K.Zhu^a, J.Bian^b, P.Wang^a, F.Harris^c

R.BaldiniFerroli^d, M.Destefanis^e, M.Maggiora^e, G.Mezzadri^f, S.Pacetti^g, L.Yan^e

- a. Institute of High Energy Physics, IHEP, Beijing, China
- b. University of Minnesota, USA
- c. Haway University, Manoa Honolulu, USA
- d. INFN, LNF, Frascati, Italy and Institute of High Energy Physics, Beijing, China
- e. INFN and University Torino, Italy
- f. INFN and University Ferrara, Italy
- g. INFN and University Perugia, Italy

Why to understand Baryons is important

- Visible mass in the Universe is due essentially to the strong force binding quarks inside the Nucleon
- □ Many Meson features come from QED->QCD, once α -> α_s Baryons: no analogue in QED and unique QCD feature
 - But why Baryon Skyrme model (no q, π 's soliton) so successful ? Baryons really fully understood ?
- □ Vector charmonium, ${}^{3}S_{1}$, and BB_{bar} linked: 3 gluons -> 3 qq_{bar} pairs
 - \circ ³S₁ -> BBbar fully understood ?
 - $\circ~$ Not the angular distributions 1+ $\alpha~\cos^2\!\theta$:

why α change sign in J/ ψ or ψ (3686)-> $\Lambda\Lambda/\Sigma\Sigma$?

why $\alpha_p \neq \alpha_n$, while $B_p \sim B_n$, in ψ (3686) -> NN_{bar}?

□ ~ 23400 pp_{bar} and 2650 nn_{bar} events have been selected, obtaining B[ψ (3686)->pp_{bar}] = (3.06±0.02±0.13)·10⁻⁴, B[ψ (3686)->nn_{bar}] = (3.09±0.06±0.14)·10⁻⁴.

□ The close B values, within small errors, would suggest interference between strong and em decay is small (positive in the pp_{bar} and negative in the nn_{bar} decay), i.e. their relative phase φ ~ 90^o.

□ In the case of J/ ψ -> NN_{bar}, close B values were also achieved : B[J/ ψ ->pp_{bar}] = (2.112±0.004±0.031)·10⁻³, B[J/ ψ ->nn_{bar}] = (2.07 ± 0.01 ±0.17)·10⁻³.

□ So far, so good. Up to a certain point.

Ψ (3686) -> N N_{bar} Angular Distributions

 \Box Fitting ψ (3686) -> NN_{bar} with 1+ $\alpha \cos^2 \theta$:

 $\alpha_{p} = 1.03 \pm 0.06 \pm 0.03$, $\alpha_{n} = 0.47 \pm 0.15 \pm 0.15$

 i.e. pp_{bar} and nn_{bar} angular distribution are quite different, in spite of similar B.

• Furthermore α_p is close to the limit $|\alpha_p| \leq 1$.

 $_{\rm O}$ No evidence of a cos θ term, i.e. no forward/backward asymmetry.

 \Box Conversely, in the case of $J/\psi \rightarrow NN_{bar}$ it was obtained:

$\alpha_{p} = 0.595 \pm 0.012 \pm 0.015$, $\alpha_{n} = 0.50 \pm 0.04 \pm 0.21$

consistent with a phase, between strong and em decay, $\phi \sim 90^{\circ}$.

4

Ψ (3686) ->pp_{bar} Angular Distribution

. Fit to $\cos(\theta)$ of p and \bar{p} with the formula $N_{sig}[(1 + \alpha \cos^2(\theta)]\epsilon(\theta) + N_{bg}f_{bg}]$. The top one is of p, the bottom one is of \bar{p} . The error bars are data, the solid blue lines are the fit curves, the dashed red lines at the bottom of each plot are the backgrounds.

5

IHEP - January 17th, 2017

$\Psi(3686) \rightarrow nn_{bar}$ Angular Distribution

Separated fits to $\cos \theta$ distributions of n and \bar{n} . The data is shown in error bars. The fitted result is shown in solid blue curve. The signal shape is from the formula $(1 + \alpha \cos^2 \theta) \epsilon(\theta)$, and is drawn on the plot in dashed black curve. Backgrounds are described by three components: shapes from continuum in dotted red, inclusive MC in dashdotted green, and tiny contribution from $\psi' \to \gamma \chi_{cJ}, \chi_{cJ} \to$ $n\bar{n}$ (not included in inclusive MC) in long-dashed cyan. All the amplitudes are fixed to the results from the fit to θ_{open} , only the variable of α is floating in the fit.

6

□ In e⁺e⁻ annihilation the FF squared $|G_M|^2$ and $|G_E|^2$ are defined: • d σ (e⁺e⁻->BB_{bar})/dcos θ ~ [$|G_M|^2$ (1+cos² θ)+4 (M_B/W)² $|G_E|^2$ sin² θ] • σ (e⁺e⁻->BB_{bar}) ~ [$|G_M|^2$ +2 (M_B/W)² $|G_E|^2$]

 \Box Accordingly, in a Vector Meson V decay B_M and B_E can be defined:

• $B(V - Bb_{bar}) = B_M + \tau \cdot B_E$, $\tau = 2 \cdot [M_N/M\psi^{}]^2 \sim 0.13$

•
$$d\sigma (V \rightarrow BB_{bar})/d\cos\theta \sim B \cdot [1 + \alpha \cdot \cos^2\theta]$$

 $\alpha = [B_M - 2 \cdot \tau \cdot B_E]/[B_M + 2 \cdot \tau \cdot B_E]$ (by def. $|\alpha| \le 1$)

 \circ τ small -> B_E small effect on B

 \circ B and α -> B_M and B_E

Magnetic B_M and Electric B_E Branching Ratios

Toy MC to evaluate B_M and B_E errors from B and α: Statistical and systematic errors added in quadrature

 $B_{M}[\psi(3686) - nn_{bar}] = (2.60 \pm 0.26) \cdot 10^{-4}$,

 $B_{E}[\psi(3686)->nn_{bar}] = (3.77\pm1.74)\cdot10^{-4}$.

□ In the pp_{bar} case, to avoid unphysical values, toy MC gaussian error simulation rejected any time $|\alpha_p| > 1$: $B_M[\psi(3686)->pp_{bar}] = (3.02\pm0.13)\cdot10^{-4}$, $B_F[\psi(3686)->pp_{bar}] = (0.28\pm0.23)\cdot10^{-4}$.

□ Or, even better, simulating 0.95 $\leq \alpha_p \leq 1$ with 68% probability, according to a Bayes approach:

 $B_{M}[\psi(3686) - pp_{bar}] = (3.02 \pm 0.13) \cdot 10^{-4}$

 $B_{E}[\psi(3686) - pp_{bar}] = (0.24 \pm 0.18) \cdot 10^{-4}.$

IHEP - January 17th, 2017

- PQCD: asymptotically B_E/B_M -> 0, due to helicity conservation. But it cannot be the explanation of ψ(3686) B_E behaviour, since it should be the same for pp_{bar} and nn_{bar}.
- Let exploit a possible interference between strong and em decay, assuming it is not the same for pp_{bar} and nn_{bar}.
 - Unfortunately the continuum $e^+e^- \rightarrow pp_{bar}$ is poorly measured at $W \sim 3.68$ GeV and there are poor information on $|G_E/G_M|$.
 - \circ BaBar and BESIII: $\sigma(e^+e^- -> pp_{bar}) \sim (1.6\pm0.5)$ pb at W~3.68 GeV B_E/B_M~1 within a large uncertainty (arXiv:1302.0055[hep-ex]1Feb2013, X.Zhu thesis)
 - Lacking any information, assume the same for e⁺e⁻ -> nn_{bar}
 - Therefore $B_{em} = B[\psi(3686) \mu\mu] / \sigma(e^+e^- \mu\mu) \cdot \sigma(e^+e^- NN_{bar}) \sim 2 \cdot 10^{-6}$

For pp_{bar} and nn_{bar} assume: $B_M \sim B_E \sim B_{em}$

Connecting pp_{bar} and nn_{bar}, it is assumed:

- $\circ B_{M}{}^{p} = |S_{M} \cdot e^{i\phi} + E_{M}{}^{p}|^{2} = |S_{M}|^{2} + |E_{M}{}^{p}|^{2} + 2 \cdot |S_{M}| \cdot |E_{m}{}^{p}| \cdot \cos\phi$
- $\circ \ B_{M}{}^{n} = \|S_{M} \cdot e^{i\phi} + E_{M}{}^{n}\|^{2} = \|S_{M}\|^{2} + \|E_{M}{}^{n}\|^{2} 2 \cdot \|S_{M}\| \cdot \|E_{m}{}^{n}\| \cdot \cos\phi$
- $_{\odot}$ Opposite sign in the interference term comes from opposite E_{M} sign

The two equations with two unknown (S_M and $cos\phi$) can be solved. Fluctuating B_M and E_M within the quoted errors, it is found:

$$S_M^2 = 2.79 \pm 0.15$$
, $\phi_M = 63^0 \pm 19^0$
 $S_M^2 > 0$, $|\cos\phi| < 1 : 94\%$ C.L.

Results consistent with the expectation.

A better ϕ measurement requires a better continuum knowledge that is a scan below and at $\psi(3686)$!

A G parity violating Amplitude in $\psi(3686)$ ->pp_{bar}?

□ No chance to find a solution for pp_{bar} Electric decay, B_E^p : 0.2% C.L. to have $S_E^2 > 0$, $|cos\phi| < 1$.

- □ Therefore, additional to the strong amplitude S, it is assumed a G parity Violating Amplitude <u>T</u> in $B_E[\psi(3686)->pp_{bar}]$, that is added to S negatively, to explain vanishing B_E in pp_{bar} , while there will be S only in B_E in nn_{bar} .
- In the following this assumption will be exploited, trying to determine T and the consistency of this approach

A G parity violating Amplitude in $\psi(3686)$ ->pp_{bar}?

12

Still assuming Eⁿ and E^p have opposite signs, em decays may interfere negatively too or don't, as in the B_M case however T values achieved are the same, within the errors

$$\begin{split} \phi &= 180^{\circ} \\ \sqrt{B_{E}^{n}} &= S^{n} + |E^{n}| , \sqrt{B_{E}^{p}} = S^{p} + |E^{p}|, \\ S^{p} &= S^{n} + T \\ T &= \sqrt{B_{E}^{p}} - \sqrt{B_{E}^{n}} - (|E^{p}| - |E^{n}|) \quad (<0) \\ \text{or} \\ \circ & \phi = 90^{\circ} \\ B_{E}^{n} &= |S^{n}|^{2} + |E^{n}|^{2} , B_{E}^{p} = |S^{p}|^{2} + |E^{p}|^{2}, \\ S^{p} &= S^{n} + T \\ T &= \sqrt{(B_{E}^{p} - |E^{p}|^{2})} - \sqrt{(B_{E}^{n} - |E^{n}|^{2})} \quad (<0) \end{split}$$

A G parity violating Amplitude in $\psi(3686)$ ->pp_{bar}?

Systematic errors in B^p and in Bⁿ are partially correlated, so in the following statistical errors only are considered, extracting T from B_F^p and B_Fⁿ:

$$B_{E}[\psi(3686) - nn_{bar}] = (3.69 \pm 1.20) \cdot 10^{-4}$$
,

 $B_{E}[\psi(3686) - pp_{bar}] = (0.22 \pm 0.16) \cdot 10^{-4}$

Therefore

 $|\tau T^2| \sim (2.7 \pm 1.0) \cdot 10^{-5}$ at the $\psi(3686)$

99.9 % C.L. that τT² < 0

o 90. % C.L. that τT² > 0.8·10⁻⁵ (in comparison B^p ~ 3·10⁻⁴)

A further Strong Amplitude in J/ψ ->pp_{bar} too ?

□ $\tau = 2 \cdot [M_N/M_{J/\psi}]^{2\sim} 0.18$ Statistical and systematic errors still added in quadrature • $B_M[J/\psi -> nn_{bar}] = (17.6\pm 2.0) \cdot 10^{-4}$, $B_E[J/\psi -> nn_{bar}] = (16.7\pm 7.8) \cdot 10^{-4}$. $B_M[J/\psi -> pp_{bar}] = (18.7\pm 0.3) \cdot 10^{-4}$, $B_E[J/\psi -> pp_{bar}] = (13.0\pm 0.7) \cdot 10^{-4}$. • $S_M^2 = 17.6\pm 1.0$, $\phi_M = 84.7^0 \pm 9.5^0$, $S_E^2 = 14.2\pm 3.9$, $\phi_E = 100.8^0 \pm 32.2^0$ • $[\tau T^2] \sim (0.9 \pm 3.4) \cdot 10^{-5}$ at the J/ψ

 \Box S_E too big to extract the G parity Violating Amplitude, if any

$\psi(3686)$ ->pp_{bar} decay via **2g1** $\gamma_{virtual}$

\Box A contribution from $\psi(3686) \rightarrow 2g1\gamma_{virt} \rightarrow NN_{bar}$ is expected.

The strong interaction contribution into the decay ${}^{3}S_{1} \rightarrow \vec{p}p$.

IHEP - January 17th, 2017

ψ (3686)->pp_{bar} decay via **2g1** γ _{virtual}

- There will be 3 amplitudes, where the virtual γ will produce alternatively one of the 3 possible qq_{bar} pairs, inside NN_{bar}. Each amplitude will be proportional to the charge of the corresponding q, so that, adding the 3 amplitudes, the total will be proportional to the Baryon charge.
- Therefore the contribution to nn_{bar} will vanish. While the contribution to pp_{bar} should be negative.
- □ Conversely in the case of a negative Baryon, like Σ^- , 2g1 γ_{virt} contribution should interferes positively, increasing B_E in pp_{bar} with respect to nn_{bar}. It has to be evaluated.
- \square Since the 2g1 γ_{virt} amplitude is small, it is difficult to check if contributes to B_M too

$\psi(3686)$ ->pp_{bar} decay via **2g1** $\gamma_{virtual}$

□ S. Pacetti (BESIII 2015 Coll. Meeting, Shanghai Jiao Tong Un, June) has already discussed the $2g1\gamma_{virtual}$ contribution, showing the experimental evidence, according the present data on $J/\psi \rightarrow \pi\pi$ decay and e⁺e⁻ -> $\pi\pi$, close to J/ψ :

B(J/ψ->2g1 γ_{virt} -> ππ) ~ 10⁻⁴, B(ψ(3686)->2g1 γ_{virt} -> ππ) ~ 0.5·10⁻⁵,

and a quantitative successful **model**: $\gamma_{virt} < \eta' \rightarrow \pi\pi$.

□ The order of magnitude of the present result is close:

$$\begin{split} & \mathsf{B}(\psi\ \ ->2g1\gamma_{\text{virt}}->\mathsf{NN}_{\text{bar}})\sim(\ 2.7\pm1.0)\cdot10^{-5}\\ & \mathsf{B}(\psi\ \ ->2g1\gamma_{\text{virt}}->\mathsf{NN}_{\text{bar}})/\mathsf{B}(\psi\ \ ->3g->\mathsf{NN}_{\text{bar}})\sim0.09\pm0.03 \end{split}$$

Simone Pacetti (BESIII 2015 Coll. Meeting, Shanghai Jiao Tong Un, June)

Simone Pacetti

(BESIII 2015 Coll. Meeting, Shanghai Jiao Tong Un, June)

DECAYS OF J/ψ and ψ (2S) into $\pi^+\pi^ M \to \pi^{+}\pi^{-} \left| \begin{array}{c} \sigma(e^{+}e^{-} \to \pi^{+}\pi^{-}) \\ (\text{nb}) \end{array} \right| \qquad \mathcal{B}_{\gamma}(M \to \pi^{+}\pi^{-}) \qquad \mathcal{B}_{\text{PDG}}(M \to \pi^{+}\pi^{-})$ $M = J/\psi$ (9 ± 3)×10⁻³ at $\sqrt{q^2} = 3 \text{ GeV}$ Meeting - SJTU Shangha $(0.54 \pm 0.18) \times 10^{-4}$ $(1.47 \pm 0.14) \times 10^{-4}$ $M = \psi(2S) egin{array}{c|c} (2.4 \pm 0.8) imes 10^{-3}\ {
m at} \ \sqrt{q^2} = M_{\psi(2S)} \end{array}$ $(7.8 \pm 2.6) \times 10^{-6}$ $(2.2 \pm 0.7) \times 10^{-6}$ * Cross sections have been obtained by extrapolating BaBar data Collaboration by means of the Gounaris-Sakurai model * In case of J/ψ the discrepancy between \mathcal{B}_{γ} and \mathcal{B}_{PDG} is $\frac{\mathcal{B}_{\text{PDG}} - \mathcal{B}_{\gamma}}{\delta \left[\mathcal{B}_{\text{PDG}} - \mathcal{B}_{\gamma} \right]} = 4.1 \pm 1.0$ 4.1 sigma effect for J/ψ Also in case of $\psi(2S)$ there is discrepancy but, due to the larger error $\frac{\mathcal{B}_{\text{PDG}} - \mathcal{B}_{\gamma}}{\delta \left[\mathcal{B}_{\text{PDG}} - \mathcal{B}_{\gamma} \right]} \bigg|_{sh(2S)} = 2.1 \pm 1.0$ 2.1 sigma effect for $\psi(2S)$

Simone Pacetti

(BESIII 2015 Coll. Meeting, Shanghai Jiao Tong Un, June)

$\psi(3686) - pp_{bar} \text{ decay via } 2g1\gamma_{virtual}$

□ M.S.Chanowitz (P.R. D12 (1975) 918) also considered 1 γ_{virt}

 \Box and made an estimation, assuming $\alpha_{s} \sim 0.3$ at the $\psi(3686)$:

B(J/ψ->2g1 γ_{virt} ->H)/ B(J/ψ->3g->H)~16/5 α/α_s P~ 0.08 P,

P is a factor to take into account "the effective coupling of the photon to qq_{bar} in the cc_{bar} decay volume", ranging from α to 1. According the present results P should be close to 1.

$\psi(3686)$ ->pp_{bar} decay via **2g1** $\gamma_{virtual}$

V.L.Cherniak and A.R.Zitniski (Phys.Rep. 112, 3 (1984) 173) also considered 1 γ_{virt}, and made an estimation, on the basis of PQCD, applied on both 1 γ_{virt} vertices (generation and hadronization), assuming α_s ~ 0.3:

A(J/ ψ ->2g1 γ_{virt} ->H)/ A(J/ ψ ->3g->H)~ - 4/5 α/α_{s}

$B(J/\psi -> 2g1\gamma_{virt} -> H) / B(J/\psi -> 3g -> H) \sim 0.4 \cdot 10^{-3}$

- Chanowitz questioned the factor 4/5 and the validity of PQCD in the hadronization regime.
 - Actually, according V.L.Cherniak and A.R.Zitniski, by the same token : A(J/ ψ ->2g1 γ_{virt} -> $\pi\pi$) ~ 0 in contradiction with present data, as shown by Simone.

Temporary Conclusions

- □ A contribution from $\psi(3686)$ -> 2g1 γ_{virt} ->NN_{bar} is expected and likely found in the vanishing Electric Proton Branching Ratio B_E^p, with respect to the Electric Neutron Branching Ratio B_Eⁿ.
 - It turns out:

 $B(\psi(3686) -> 2g1\gamma_{virt} -> NN_{bar}) \sim (2.8 \pm 1.9) \cdot 10^{-5}$

(99.4% CL that B >0, 90% CL that B > $3 \cdot 10^{-6}$)

and there is a negative interference between 3g and $2g1\gamma_{virt}$

- The evidence of this G parity violation is good, according the achieved CL. Unfortunately statistics is not enough to get also good accuracy
- Present theoretical predictions are affected by lack of knowledge concerning the hadronization

Temporary Conclusions

- $\hfill \hfill \hfill$
- A better determination would shed light on the hadronization mechanism (validity of PQCD)
- □ B_M phase, between strong and em decay, $\phi_M = 63^\circ \pm 19^\circ$, but present continuum knowledge has large uncertainties-> scan below and at $\psi(3686)$!
- Work in progress, however, once more.....

BARYONS STRIKE BACK IN BESIII

IHEP - January 17th, 2017