# Measurement of the cross section

# of $e^+e^- \to \Omega^-\overline{\Omega}^+$

Bin Wang, Xin Mo, Matt Kurth, Xinchou Lou IHEP 2017.05.16

Charmonium group meeting

# Content

➤Motivation

► Data and MC samples

≻Event selection

➢Background study

➢Signal extraction

Summary and to do list

### Motivation I

• BESIII has measured the cross section of  $e^+e^- \rightarrow p\bar{p}$ ,  $\Lambda\bar{\Lambda}$ , and  $\Lambda_c^+\bar{\Lambda}_c^+$ .



# Motivation II



- There is few results of  $\Omega^-\overline{\Omega}^+$  production. CLEO-c and BESII have measured this process, while few signal events are extracted.
- BESIII has collected large integrated luminosities of ψ(2S), ψ(3770) and XYZ data samples, we can get a more precise result and measure the cross section of Ω<sup>-</sup>Ω<sup>+</sup> process above 4.0 GeV.



**Fig. 4.** Magnetic form factors  $|G_{B}^{B}| \times 10^{2}$  for proton and hyperons for  $|Q^{2}| = 14.2 \text{ GeV}^{2}$ . The closed circles correspond to the assumption  $|G_{M}^{B}| = |G_{E}^{B}|$ , and the open circles to the assumption  $|G_{E}^{B}| = 0$ .

# Data and MC samples

#### > Data samples:

| Energy<br>(MeV) | Luminosity<br>(pb <sup>-1</sup> ) | Analysis<br>Environment | Energy<br>(MeV) | Luminosity<br>(pb <sup>-1</sup> ) | Analysis<br>Environment |
|-----------------|-----------------------------------|-------------------------|-----------------|-----------------------------------|-------------------------|
| $\psi(3686)$    | 2012                              | BOSS6.6.4.p01           | 4226.3          | 1091.7                            | BOSS6.6.4.p01           |
| $\psi(3770)$    | 2.93                              | BOSS6.6.4.p02           | 4237            | 529.0                             | BOSS7.0.2.p01           |
| 4007.6          | 481.96                            | BOSS6.6.4.p01           | 4247            | ?                                 | BOSS7.0.2.p01           |
| 4180            | 3160                              | BOSS7.0.2.p01           | 4258            | 825.7                             | BOSS6.6.4.p01           |
| 4190            | 517.5                             | BOSS7.0.2.p01           | 4358.3          | 539.8                             | BOSS6.6.4.p01           |
| 4200            | 519.4                             | BOSS7.0.2.p01           | 4415.6          | 1073.6                            | BOSS6.6.4.p01           |
| 4210            | 509.0                             | BOSS7.0.2.p01           | 4599.5          | 566.9                             | BOSS6.6.4.p01           |
| 4220            | 508.5                             | BOSS7.0.2.p01           |                 |                                   |                         |

#### ≻ MC samples:

- > Inclusive MC:  $\psi(3686)$  and  $\sqrt{s}=4.2263$  GeV.
- Exclusive MC (0.1M):  $e^+e^- \rightarrow \Omega^-\overline{\Omega}^+, \Omega^- \rightarrow \Lambda K^-, \overline{\Omega}^+ \rightarrow anything$ , [PHSP/J2BB2, optimize in the future].

- At least three charged tracks are required and their polar angles  $\theta$  must satisfy  $|\cos \theta| < 0.93;$
- $K^{\pm}$  list:  $\mathcal{L}(\mathbf{K}) > \mathcal{L}(\boldsymbol{\pi}), \mathcal{L}(\mathbf{K}) > 0;$
- Proton list:  $\mathcal{L}(p) > 0$ ,  $\mathcal{L}(p) > \mathcal{L}(K)$  and  $\mathcal{L}(p) > \mathcal{L}(\boldsymbol{\pi})$ ;
- Loop the remaining charged tracks to find an charged pion and then reconstruct the  $\Lambda/\overline{\Lambda}$ ;
- Loop all of K<sup>±</sup> and Λ/Λ candidates and perform a vertex fit for K<sup>±</sup>Λ (include the wrong sign (WS) candidates) and a secondary vertex fit for Ω<sup>-</sup>;
- The decay lengths of  $\Lambda/\overline{\Lambda}$  and  $\Omega^-$  must satisfy  $L/\sigma > 2$ ;
- If there is more than one  $\Omega^-$  candidates, the candidate with minimum  $\chi^2$  is selected.



 $\triangleright \quad \Omega^-$  peak is clearly visible in the distributions of  $M(\Lambda K^- / \overline{\Lambda} K^+)$  for data and MC samples.

> It has an enhancement near the threshold of  $\Lambda K^- / \overline{\Lambda} K^+$  system for data.

7



![](_page_8_Figure_0.jpeg)

# Signal extraction

![](_page_9_Figure_1.jpeg)

![](_page_9_Figure_2.jpeg)

- Signal shape: Signal MC convoluted with a Gaussian function
- Background shape: 1<sup>st</sup> order polynomial
- Signal mass window: [1.65, 1.69] GeV/c<sup>2</sup>
- Fit to inclusive MC:  $3901 \pm 66$  [Expected: 3984].
- Fit to data sample:  $2198\pm52$

# Signal extraction for other data

![](_page_10_Figure_1.jpeg)

1.72

# Signal extraction for other data

 $N_{\Omega^{-}\overline{\Omega}^{+}}^{sig} = N^{signal} - f \cdot N^{sideband}$ 

- $N_{\Omega^-\overline{\Omega}^+}^{sig}$  is the signal yield of  $e^+e^- \to \Omega^-\overline{\Omega}^+$ ;
- $N^{signal}$  is the number of events in  $RM(\Lambda K^{-}) + M(\Lambda K^{-}) m(\Omega^{-})$  signal region;
- $N^{sideband}$  is the number of events in  $M(\Lambda K^{-})$  sideband region, which is [1.62, 1.644] GeV/c<sup>2</sup> and [1.696, 1.72] GeV/c<sup>2</sup>;
- f is the scale factor (0.5).

![](_page_11_Figure_6.jpeg)

Using the counting method, the signal yield of  $e^+e^- \rightarrow \Omega^-\overline{\Omega}^+$  at  $\psi(3686)$  data and other data sets are  $2305\pm53$  and  $112\pm16$ , respectively.

![](_page_11_Figure_8.jpeg)

![](_page_12_Figure_0.jpeg)

# Summary and to do list

- $\psi(3686) \rightarrow \Omega^{-}\overline{\Omega}^{+}$  is observed.
- $e^+e^- \rightarrow \Omega^-\overline{\Omega}^+$  is first observed in data at BESIII.
- Using the counting method, the signal yield of e<sup>+</sup>e<sup>-</sup> → Ω<sup>-</sup>Ω<sup>+</sup> at ψ(3686) data and other data sets are 2305±53 and 112 ± 16, respectively.

Optimize the signal extraction

■ Study the decay model of  $e^+e^- \rightarrow \Omega^-\overline{\Omega}^+$  and determine the efficiency of each energy points;

 $\square \text{ Measure the cross section of } e^+e^- \rightarrow \Omega^-\overline{\Omega}^+.$ 

# backup

![](_page_15_Figure_1.jpeg)

![](_page_16_Figure_1.jpeg)